We propose to develop and implement a Knowledge Base and Coordination Center for the Consortium of Cross Organ Mechanism-Associated Phenotypes for Genetic Analyses of Heart, Lung, Blood, and Sleep Diseases (MAPGen). Our team possesses strong expertise in bioinformatics, statistics, computer science, as well as clinical and biological expertise in heart, lung, and blood diseases. We propose three major functions of the center: (1) Develop a knowledge base on interconnections among diseases. We will systematically identify, integrate, and analyze the vast amount of public data (e.g. NCBI GEO, SRA, dbGap, and published papers) to comprehensively describe the shared molecular mechanisms among diseases. We will establish a multi-dimensional disease connectivity map that can be interactively accessed via web- interface. Using this knowledge base, we will design computational approaches to identify biomarkers that can be used to predict more than one disease, to regroup diseases based on the underlying molecular mechanisms, to design novel approaches to predict disease progression, and to identify novel drug usages. (2) Develop a bioinformatics infrastructure for the MAPGen consortium. We will be responsible for the quality control of the data generated by Consortium;we will perform integrative analysis of data generated by different RCs as well those from public domains, in order to gain deep insights and fundamental understandings of the shared molecular mechanisms among the HLBS diseases. We will use the knowledge base developed in Aim 1 to further establish the connections between the HLBS and other diseases. We will work closely with the medical co-investigators at USC as well as all RC teams to develop and validate biological hypotheses. (3) We will establish an Administrative Center to coordinate activities across RCs, including coordination of manuscript and other document preparation;coordination of the activities of all Committees;overall study coordination and quality control;and administering the distribution of additional funds in years 3 and 4.
We aim to synergize the effort across all RCs to achieve the goal of understanding the genetic mechanisms responsible for the interconnections among cross-organ diseases.

Public Health Relevance

The proposed projects will facilitate the identification and characterization of common pathobiologic traits and mechanisms cross organ systems, and provide a basis for the rational, mechanism-based development of new diagnostic, prognostic and therapeutic strategies for heart, lung, blood and sleep disorders.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01HL108634-02
Application #
8324915
Study Section
Special Emphasis Panel (ZHL1-CSR-H (M2))
Program Officer
Gan, Weiniu
Project Start
2011-08-25
Project End
2016-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
2
Fiscal Year
2012
Total Cost
$1,029,017
Indirect Cost
$335,194
Name
University of Southern California
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Zhou, Beiyun; Flodby, Per; Luo, Jiao et al. (2018) Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. J Clin Invest 128:970-984
Mork, Ryan L; Hogan, Patrick G; Muenks, Carol E et al. (2018) Comprehensive modeling reveals proximity, seasonality, and hygiene practices as key determinants of MRSA colonization in exposed households. Pediatr Res 84:668-676
Li, Wenyuan; Li, Qingjiao; Kang, Shuli et al. (2018) CancerDetector: ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data. Nucleic Acids Res 46:e89
Hua, Nan; Tjong, Harianto; Shin, Hanjun et al. (2018) Producing genome structure populations with the dynamic and automated PGS software. Nat Protoc 13:915-926
Chattopadhyay, Ishanu; Kiciman, Emre; Elliott, Joshua W et al. (2018) Conjunction of factors triggering waves of seasonal influenza. Elife 7:
Hogan, Patrick G; Mork, Ryan L; Boyle, Mary G et al. (2018) Interplay of personal, pet, and environmental colonization in households affected by community-associated methicillin-resistant Staphylococcus aureus. J Infect :
Kang, Shuli; Li, Qingjiao; Chen, Quan et al. (2017) CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biol 18:53
Flodby, Per; Li, Changgong; Liu, Yixin et al. (2017) Cell-specific expression of aquaporin-5 (Aqp5) in alveolar epithelium is directed by GATA6/Sp1 via histone acetylation. Sci Rep 7:3473
Li, Qingjiao; Tjong, Harianto; Li, Xiao et al. (2017) The three-dimensional genome organization of Drosophila melanogaster through data integration. Genome Biol 18:145
Horng, Sam; Therattil, Anthony; Moyon, Sarah et al. (2017) Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 127:3136-3151

Showing the most recent 10 out of 40 publications