Myotonic dystrophy type 1 (DM1) is a relatively common form of muscular dystrophy. The genetic basis is an expansion of CTG repeats in the 3'untranslated region of DMPK, a gene encoding a protein kinase expressed in skeletal, cardiac, and smooth muscle, and in neurons. This unusual mutation gives rise to RNA dominance, in which expression of RNA containing an expanded CUG (CUG^""""""""'') repeat leads cell dysfunction. The mutant RNA accumulates in nuclear foci and initiates a complex cascade of downstream events, such as, defects in the regulation of RNA splicing. An attractive therapeutic approach, therefore, is to attack the problem at its root cause, by accelerating the clearance of the toxic RNA. To this end, we are proposing to develop RNase H-active antisense oligonucleotides (ASOs) targeting the mutant human DMPK {mut-hDMPK) mRNA. Previous studies have indicated that biodistribution and activity of ASOs in skeletal and candiac muscle is low. In contrast, we have found that systemically-delivered ASOs are highly active in muscle of wild-type mice, when targeted against a transcript that is retained in the nucleus - presumably because this is the compartment in which RNase H is active. We therefore postulated that CUG-expanded transcripts may also show efficient knockdown in muscle, because they also are retained in the nucleus. Consistent with this idea, subcutaneous administration of ASO for four weeks caused highly effective knockdown of CUG(R)""""""""''transcripts in muscle, reversal of RNA splicing derangements, and rescue of myotonia in transgenic mice. We seek now to develop optimally-effective, systemically-active ASOs that target mut- hDMPK transcripts for cleavage in skeletal and cardiac muscle. Development plans call for identification of ASOs that are highly active in cells, selection of ASOs that show optimal mut-hDMPK knockdown in transgenic mice, elimination of ASOs that show unacceptable toxicity in rodents and monkeys, and then IND- enabling toxicology/pharmacology studies using GMP-manufactured drug. To accomplish these goals we have formed an academic-commercial collaboration that includes all of the scientific, clinical, regulatory, and manufacturing expertise that is needed to bring a drug treatment for DM1 to the clinic.

Public Health Relevance

Myotonic dystrophy is an inherited disease that causes progressive disability and premature death. No treatment is currently available that can improve the symptoms or slow the disease progression. The goal of this project is to develop a drug treatment for myotonic dystrophy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01NS072323-01
Application #
8033858
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Porter, John D
Project Start
2011-04-01
Project End
2015-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
1
Fiscal Year
2011
Total Cost
$554,543
Indirect Cost
Name
University of Rochester
Department
Neurology
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Thornton, Charles A; Wang, Eric; Carrell, Ellie M (2017) Myotonic dystrophy: approach to therapy. Curr Opin Genet Dev 44:135-140
Carrell, Samuel T; Carrell, Ellie M; Auerbach, David et al. (2016) Dmpk gene deletion or antisense knockdown does not compromise cardiac or skeletal muscle function in mice. Hum Mol Genet 25:4328-4338
Pandey, Sanjay K; Wheeler, Thurman M; Justice, Samantha L et al. (2015) Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 355:329-40
Nakamori, Masayuki; Sobczak, Krzysztof; Puwanant, Araya et al. (2013) Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol 74:862-72
Wheeler, Thurman M; Leger, Andrew J; Pandey, Sanjay K et al. (2012) Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 488:111-5