The primary goal of the Epi4K Center Without Walls is to increase understanding of the genetic basis of human epilepsy in order to improve the well-being of patients and family members living with these disorders. This improvement will come in the form of better diagnostics, treatments and cures. To accomplish this goal, Epi4K aims to analyze the genomes of a large number of well-phenotyped epilepsy patients and families collected by investigators from several major research groups. The specific goals of this core (3 of 7 - Sequencing, Biostatistics, and Bioinformatics Core) are to 1) sequence and annotate 4,000 genomes, 2) develop computational procedures for calling CNVs in whole exome data, 3) identify and prioritize variants of interest for all three projects, 4) conduct follow up genotypin analyses in a cohort of additional cases and controls, and 5) quickly and efficiently share data among the Epi4K consortium.

Public Health Relevance

Epilepsy is one of the most common human neurological disorders, affecting 3% of the population. Although it is clear that there is a strong genetic component for epilepsy, there are still only a few genes known. The Epi4K project will identify new genes and genetic pathways in epilepsy and will directly benefit individuals with epilepsy and their families through improved diagnostic, prognostic and recurrence risk information.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
3U01NS077303-06S1
Application #
9664696
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Whittemore, Vicky R
Project Start
2011-09-30
Project End
2018-07-31
Budget Start
2015-08-01
Budget End
2018-07-31
Support Year
6
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Genetics
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Raghavan, Neha S; Brickman, Adam M; Andrews, Howard et al. (2018) Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer's disease. Ann Clin Transl Neurol 5:832-842
Assoum, Mirna; Lines, Matthew A; Elpeleg, Orly et al. (2018) Further delineation of the clinical spectrum of de novo TRIM8 truncating mutations. Am J Med Genet A 176:2470-2478
Shaw, Kelly A; Cutler, David J; Okou, David et al. (2018) Genetic variants and pathways implicated in a pediatric inflammatory bowel disease cohort. Genes Immun :
Winawer, Melodie R; Griffin, Nicole G; Samanamud, Jorge et al. (2018) Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83:1133-1146
Ottman, Ruth; Freyer, Catharine; Mefford, Heather C et al. (2018) Return of individual results in epilepsy genomic research: A view from the field. Epilepsia 59:1635-1642
Heinzen, Erin L; O'Neill, Adam C; Zhu, Xiaolin et al. (2018) De novo and inherited private variants in MAP1B in periventricular nodular heterotopia. PLoS Genet 14:e1007281
Epilepsy Genetics Initiative (2018) De novo variants in the alternative exon 5 of SCN8A cause epileptic encephalopathy. Genet Med 20:275-281
Epi4K consortium; Epilepsy Phenome/Genome Project (2017) Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol 16:135-143
Epi4K Consortium; EuroEPINOMICS-RES Consortium; Epilepsy Phenome Genome Project (2017) Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data. Eur J Hum Genet 25:894-899
Myers, Candace T; Stong, Nicholas; Mountier, Emily I et al. (2017) De Novo Mutations in PPP3CA Cause Severe Neurodevelopmental Disease with Seizures. Am J Hum Genet 101:516-524

Showing the most recent 10 out of 38 publications