Huntington's disease (HD) is caused by a CAG expansion mutation whose length is the primary determinant of the age at which diagnostic motor signs emerge, typically in mid-life. The length of the CAG repeat is also correlated with age of onset of cognitive or psychiatric clinical signs in those who present first with these features. Thus, CAG repeat length influences the rate with which biological changes in HD that begin early, due to the expression of mutant huntingtin, lead much later to motor, cognitive or psychiatric onset, although not all steps in each of these three pathogenic processes are likely to be identical. However, the age at onset of motor signs, and likely the timing of cognitive, psychiatric and imaging abnormalities, is influenced by other as yet unidentified genetic factors, not as independent risk factors but as modifiers, i.e., suppressors or enhancers of phenotypes dependent on the presence of an expanded CAG repeat. PREDICT-HD, which was established as an observational study to investigate the effects of the HD mutation during the decades prior to diagnosis, has accumulated a wealth of data in various domains, including brain imaging, motor signs, cognitive disturbance and psychiatric manifestations, that represent a valuable resource for identifying potential modifiers. Via the Center for Inherited Disease Research (CIDR), we have recently generated genome-wide SNP data for PREDICT-HD, and we have complemented these data with genome-wide SNP data for more than 6,000 HD individuals from the Huntington Study Group COHORT study, the European Huntington Disease Network's Registry study and a collection of banked post-mortem HD brains. A coordinated strategy using PREDICT-HD in combination with these other datasets offers the opportunity to identify genetic modifiers that influence the disease pathway(s) triggered by the HD mutation by enhancing or suppressing its timing and/or modifying its phenotypic expression. To identify genetic factors that alter the course of HD, we will use a combination of genome-wide association (GWA) analysis of common variants to quantitative HD phenotypes and analysis of rare SNPS identified by whole exome sequencing of 'extreme' individuals whose phenotypes differ substantially from those expected from their CAG-length and age. Completion of our aims will advance HD research toward effective therapeutics, as the identification of modifier genes, which alter the rate or expression of the disease in human patients, could provide 'pre-validated' targets for therapeutic development as well as a new tool for stratifying clinical trials to maximie their informativeness.

Public Health Relevance

This grant will use a combination of genetic strategies including comparison of individuals representing opposite extremes of the manifestations of Huntington's disease to identify genetic factors that modify the course of the disorder and therefore provide valid targets for therapeutic development.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01NS082079-03
Application #
8920170
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Sutherland, Margaret L
Project Start
2013-09-01
Project End
2017-02-28
Budget Start
2015-09-01
Budget End
2017-02-28
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
Long, Jeffrey D; Lee, Jong-Min; Aylward, Elizabeth H et al. (2018) Genetic Modification of Huntington Disease Acts Early in the Prediagnosis Phase. Am J Hum Genet 103:349-357
Lee, Jong-Min; Chao, Michael J; Harold, Denise et al. (2017) A modifier of Huntington's disease onset at the MLH1 locus. Hum Mol Genet 26:3859-3867
Chao, Michael J; Gillis, Tammy; Atwal, Ranjit S et al. (2017) Haplotype-based stratification of Huntington's disease. Eur J Hum Genet 25:1202-1209
Shin, Aram; Shin, Baehyun; Shin, Jun Wan et al. (2017) Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels. Hum Mol Genet 26:1258-1267
Shin, Jun Wan; Kim, Kyung-Hee; Chao, Michael J et al. (2016) Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25:4566-4576
Keum, Jae Whan; Shin, Aram; Gillis, Tammy et al. (2016) The HTT CAG-Expansion Mutation Determines Age at Death but Not Disease Duration in Huntington Disease. Am J Hum Genet 98:287-98
Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium (2015) Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease. Cell 162:516-26
Correia, Kevin; Harold, Denise; Kim, Kyung-Hee et al. (2015) The Genetic Modifiers of Motor OnsetAge (GeM MOA) Website: Genome-wide Association Analysis for Genetic Modifiers of Huntington's Disease. J Huntingtons Dis 4:279-84
Lee, Jong-Min; Kim, Kyung-Hee; Shin, Aram et al. (2015) Sequence-Level Analysis of the Major European Huntington Disease Haplotype. Am J Hum Genet 97:435-44
Aylward, Elizabeth H (2014) Magnetic resonance imaging striatal volumes: a biomarker for clinical trials in Huntington's disease. Mov Disord 29:1429-33