Calcium signaling participates in almost every aspect of cell functioning, specifically in neurons. Genetically encoded calcium indicators (GECIs) developed from fluorescent proteins (FPs) provide a robust reliable readout of neuronal activity including spike number, timing, frequency, and levels of synaptic input. Extending the color palette of GECIs toward near-infrared (NIR) spectral range will facilitate deep-tissue imaging, allow functional imaging from multiple cell populations expressing various multicolor neuronal indicators, and enable to integrate NIR GECIs into optogenetic experiments. Reliable combination of GECIs with optogenetic modulation in all-optical electrophysiology setups has been difficult to achieve in practice due to spectral overlap between activation light of opsin actuators and excitation light of available GECIs. Building upon our molecular evolution technologies and extensive experience in engineering and characterization of various FPs and FP-based biosensors, we propose to generate two new classes of GECIs that are excited and fluoresce in the NIR spectrum by using novel NIR FPs of a miRFP series developed from bacterial phytochromes. Unlike other NIR FPs designed from phytochromes, miRFPs are monomeric and bright in mammalian cells, including neurons. The first class of the planned NIR GECIs will be based on the ratiometric FRET changes between NIR FP donor and NIR FP acceptor (Aim 1). The second class of GECIs will be based on the intensity changes of the single NIR FPs (Aim 2). To perform sensitive and specific measurements of neural activity, the NIR GECIs will be combined with the modern adaptive optics imaging technologies allowing calcium measurements in vivo with enhanced spatial and temporal resolutions at depth. We will apply the adaptive optics correction via direct wavefront sensing to NIR GECI two-photon imaging in vivo (Aim 3). This will allow non-invasive detection of neural activity at synaptic resolution throughout mouse cortex (1 mm depth) and at cellular resolution further into subcortical structures (to 1.6 mm depth). The large spectral separation of NIR GECIs from visible GECIs and opsin actuators will also allow multicolor functional imaging in a large number of neurons in brain and elucidation of the input/output interactions of neural circuits. The proposed research will provide highly demanded deep-tissue optical probes allowing a comprehensive view of neural activity at cellular and whole-brain levels.

Public Health Relevance

Development of novel technologies for monitoring neuronal activity can facilitate our understanding of brain function in norm and pathology. Proposed genetically encoded indicators reporting the calcium changes in near-infrared spectral range will facilitate non-invasive deep-tissue functional imaging and circuitry mapping and be combined with optogenetic tools. Enhanced spatial and temporal resolutions of neural activity imaging in vivo should enable new quantitative approaches and lead to creation of effective treatments of brain disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01NS103573-02
Application #
9526574
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Talley, Edmund M
Project Start
2017-08-01
Project End
2020-07-31
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine, Inc
Department
Type
DUNS #
079783367
City
Bronx
State
NY
Country
United States
Zip Code
10461
Li, Lei; Shemetov, Anton A; Baloban, Mikhail et al. (2018) Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nat Commun 9:2734
Leopold, Anna V; Chernov, Konstantin G; Verkhusha, Vladislav V (2018) Optogenetically controlled protein kinases for regulation of cellular signaling. Chem Soc Rev 47:2454-2484
Liu, Wei; Shcherbakova, Daria M; Kurupassery, Neel et al. (2018) Quad-mode functional and molecular photoacoustic microscopy. Sci Rep 8:11123
Shcherbakova, Daria M; Stepanenko, Olesya V; Turoverov, Konstantin K et al. (2018) Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales. Trends Biotechnol 36:1230-1243
Rodríguez, Cristina; Ji, Na (2018) Adaptive optical microscopy for neurobiology. Curr Opin Neurobiol 50:83-91
Shcherbakova, Daria M; Cox Cammer, Natasha; Huisman, Tsipora M et al. (2018) Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat Chem Biol 14:591-600
Rodríguez, Cristina; Liang, Yajie; Lu, Rongwen et al. (2018) Three-photon fluorescence microscopy with an axially elongated Bessel focus. Opt Lett 43:1914-1917
Redchuk, Taras A; Karasev, Maksim M; Omelina, Evgeniya S et al. (2018) Near-Infrared Light-Controlled Gene Expression and Protein Targeting in Neurons and Non-neuronal Cells. Chembiochem 19:1334-1340
Piatkevich, Kiryl D; Suk, Ho-Jun; Kodandaramaiah, Suhasa B et al. (2017) Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes in Neuroimaging. Biophys J 113:2299-2309
Oliinyk, Olena S; Chernov, Konstantin G; Verkhusha, Vladislav V (2017) Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes. Int J Mol Sci 18: