Understanding the neural mechanisms underpinning cognition and behavior requires the ability to measure the dynamics and interactions of populations of neurons spread across many brain regions. Electrophysiological techniques provide the ability to measure this activity across superficial and deep structures at the speed of thought. Recent advances in electrophysiology have massively increased data quantity, quality, and ease of acquisition, thereby meaningfully reducing barriers to understanding the global brain circuits underlying behavior. A significant remaining challenge is to optimize device characteristics in order to further broaden utility, improve data quality, and accelerate the pace of research. In particular, state of the art site density is spatially too coarse to detect some cell types and neuronal processes; it remains challenging to record neurons stably in the face of brain motion; and data preprocessing is still a major limiting factor in the pace of experiments. This proposal will address these limitations by producing and evaluating a new device with >10x the number of recording sites than state-of-the-art, corresponding to an order of magnitude higher density. This device thus functions like a high-resolution electrical camera in the brain, able to image tiny electrical fields and capable of capitalizing on techniques from optics such as image registration for recording stability. We will validate and develop the new probe's characteristics by quantifying their increased ability to detect a large range of neuron types; by testing and developing their ability to track neurons across brain motion using controlled conditions; by improving algorithms towards automation of data preprocessing; and by conducting multi-modal ground-truth experiments. These probes will go beyond solving technical limitations, additionally providing new types of data: electrical imaging of `electro-morphological' shapes will enable enhanced cell-type identification and validation of neuronal biophysical models in vivo. We will disseminate the new probes, along with user-friendly software to take advantage of their improved characteristics, to `beta-tester' labs specifically interested in studying key areas of scientific opportunity. These areas include dendritic computation, freely-moving behavior, and cerebellar function, and this direct dissemination will rapidly accelerate their impact on scientific advancement.

Public Health Relevance

Understanding the structure and function of the brain is key to developing effective cures and treatments for a wide range of disorders, including neurodegeneration, psychiatric conditions, and mental disabilities. Despite this importance, our understanding is limited, and is primarily constrained by our inability to perform detailed measurements of the activity of the billions of neurons in each of our brains. In this work we will develop novel devices that enable unprecedented resolution and recording stability, enabling previously impossible recordings of detailed activity from neurons across the brain over timescales of behavior and learning.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01NS113252-02
Application #
10016865
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Kukke, Sahana Nalini
Project Start
2019-09-15
Project End
2023-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
2
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Washington
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195