The specific goal of this research project is to test the hypothesis that the Medtronic InterStim II Neurostimulator coupled with 3889 SNS Leads can be used for subcutaneous nerve stimulation (SCNS) to achieve rhythm and rate control of atrial fibrillation (AF) in a canine model. If the canine studies are successful, we will perform pilot clinical trials to facilitate rate control in patients with AF and rapid ventricular responses. The ultimate goal is to motivate Medtronic Inc. to perform additional clinical studies for FDA approval of SCNS as a labeled indication for managing AF. The study is responsive to the RFA-RM-16-027 because it will utilize existing market-approved technology for new market indications. AF is the most common cardiac arrhythmias in developed countries, and is associated with significantly increased mortality and morbidity. Drugs used for rate and rhythm control of AF are not uniformly successful and may be associated with significant side effects. Catheter ablation of the atrioventricular (AV) node is an option for rate control in patients with drug-refractory AF and rapid ventricular responses. However, AV node ablation makes the patient pacemaker dependent. It is highly desirable to develop an alternative method for AF control without the use drugs or ablation procedures. Histological studies showed that skin is well innervated by sympathetic nerves. In dogs, the postganglionic sympathetic nerve fibers of neck and thorax come primarily from the stellate ganglion (SG). Our preliminary studies showed that subcutaneous nerve stimulation (SCNS) from different sites in the thorax can damage SG and reduce SG nerve activity (SGNA). These findings suggest an exciting possibility that electrical stimulation of the skin may reduce SGNA to provide both rate and rhythm control of AF. Medtronic Inc. has a number of neurostimulators approved by FDA for pain and urinary control. The purpose of the present study was to test the hypothesis that the InterStim II Neurostimulator and the 3889 SNS Leads can be used effectively for SCNS and control AF. If the results are promising, it is possible to motivate Medtronic to sponsor pilot clinical studies and translate these findings to human patients. We propose the following specific aims:
Specific Aim 1 : To perform SCNS at various outputs to test the hypotheses that the magnitudes of output is important in determining the effects of neuromodulation. Specifically, high output stimulation causes SG damage and reduce sympathetic tone while very low output SCNS can cause SG and cardiac nerve sprouting, thus increasing the sympathetic tone.
Specific Aim 2 : To test the hypothesis that SCNS at high output is effective in rate and rhythm control of AF while at very low output is proarrhythmic. If SG damage underlies the mechanisms of the antiarrhythmic effects of SCNS, then it follows that high output SCNS is both necessary and sufficient to generate antiarrhythmic effects. On the other hand, if very low output SCNS causes nerve sprouting and increases sympathetic tone, then low output stimulation should be proarrhythmic. We will use a canine model of paroxysmal and persistent AF to test these hypotheses.

Public Health Relevance

Cardiac arrhythmias contribute to the morbidity and mortality of heart diseases. Our goal is to study the effects of subcutaneous nerve stimulation on atrial fibrillation, the most common cardiac arrhythmia. Therefore, this research project is highly relevant to public health.

Agency
National Institute of Health (NIH)
Institute
National Center for Advancing Translational Sciences (NCATS)
Type
Research Demonstration--Cooperative Agreements (U18)
Project #
1U18TR002208-01
Application #
9405146
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Tagle, Danilo A
Project Start
2017-08-01
Project End
2019-06-30
Budget Start
2017-08-01
Budget End
2018-06-30
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Indiana University-Purdue University at Indianapolis
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Chen, Mu; Xu, Dongzhu; Wu, Adonis Z et al. (2018) Phospholamban regulates nuclear Ca2+ stores and inositol 1,4,5-trisphosphate mediated nuclear Ca2+ cycling in cardiomyocytes. J Mol Cell Cardiol 123:185-197
Jiang, Zhaolei; Zhao, Ye; Tsai, Wei-Chung et al. (2018) Effects of Vagal Nerve Stimulation on Ganglionated Plexi Nerve Activity and Ventricular Rate in Ambulatory Dogs With Persistent Atrial Fibrillation. JACC Clin Electrophysiol 4:1106-1114
Yin, Dechun; Chen, Mu; Yang, Na et al. (2018) Role of apamin-sensitive small conductance calcium-activated potassium currents in long-term cardiac memory in rabbits. Heart Rhythm 15:761-769
Chen, Mu; Xu, Dong-Zhu; Wu, Adonis Z et al. (2018) Concomitant SK current activation and sodium current inhibition cause J wave syndrome. JCI Insight 3:
Yuan, Yuan; Jiang, Zhaolei; Zhao, Ye et al. (2018) Long-term intermittent high-amplitude subcutaneous nerve stimulation reduces sympathetic tone in ambulatory dogs. Heart Rhythm 15:451-459
Shelton, Richard S; Ogawa, Masahiro; Lin, Hongbo et al. (2018) Effects of Stellate Ganglion Cryoablation on Subcutaneous Nerve Activity and Atrial Tachyarrhythmias in a Canine Model of Pacing-Induced Heart Failure. JACC Clin Electrophysiol 4:686-695
Zhao, Ye; Yuan, Yuan; Tsai, Wei-Chung et al. (2018) Antiarrhythmic effects of stimulating the left dorsal branch of the thoracic nerve in a canine model of paroxysmal atrial tachyarrhythmias. Heart Rhythm 15:1242-1251
Everett 4th, Thomas H; Doytchinova, Anisiia; Cha, Yong-Mei et al. (2017) Recording sympathetic nerve activity from the skin. Trends Cardiovasc Med 27:463-472