Immune tolerance, the phenomenon by which the allograft is accepted without immunosuppression while preserving the recipient's protective immunity, represents a solution to the problems of acute and chronic rejection and the resulting long-term reliance on toxic immunosuppressive therapies. The significant success of transplantation tolerance studies in rodent models has suggested that similar tolerance-induction techniques involving bone marrow transplant and hematopoietic chimerism could be achieved in preclinical and clinical situations, thus revolutionizing solid organ transplantation. Non-human primate models have a number of important attributes that allow them to serve as critical preclinical models in order to bridge the basic insights gained in mice and the application of these insights to patient care. Among the most prominent of the tolerance induction strategies are CD28/CD40 T cell costimulation blockade and mixed chimerism induction. By taking advantage of our ability to induce chimerism using mobilized peripheral blood stem cells from living Rhesus macaque donors, we propose to perform a systematic analysis of impact of a costimulation blockade and chimerism-based tolerance induction strategy in transplant pairs having varying degrees of MHC disparity. These studies also are focused on understanding the immune consequences of transplant, specifically on evaluating the anti-donor response and the preservation of protective immunity in the peritransplant period. The unifying purpose of our proposal is to develop clinically applicable protocols for the induction of tolerance to solid organ allografts while preserving immune competence in the transplant recipient. Specifically, the aims in this project will address 1) the effectiveness of a CD28/CD40 costimulation-blockade-based chimerism/tolerance induction protocol on transplants displaying varying degrees of MHC matching between the donor and recipient, 2) the necessary components of the immunomodulatory strategy for chimerism and tolerance induction, and 3) the efficacy of inhibiting Natural Killer cell-mediated alloreactivity in order to decrease the need for recipient conditioning and/or donor peripheral blood stem cells to promote tolerance across MHC barriers. We believe the ability to induce stable donor chimerism and immune tolerance in this transplant setting would have a large impact on the outcome of transplantation, and holds the promise of relieving many transplant recipients from the requirement for complicated life-long immunosuppressive regimens and their attendant toxicities.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI051731-09
Application #
8078840
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
9
Fiscal Year
2010
Total Cost
$670,784
Indirect Cost
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Kean, Leslie S (2018) Defining success with cellular therapeutics: the current landscape for clinical end point and toxicity analysis. Blood 131:2630-2639
Colonna, Lucrezia; Peterson, Christopher W; Schell, John B et al. (2018) Evidence for persistence of the SHIV reservoir early after MHC haploidentical hematopoietic stem cell transplantation. Nat Commun 9:4438
Song, M; Mulvihill, M S; Williams, K D et al. (2018) Fatal SV40-associated pneumonia and nephropathy following renal allotransplantation in rhesus macaque. J Med Primatol 47:81-84
Taraseviciute, Agne; Tkachev, Victor; Ponce, Rafael et al. (2018) Chimeric Antigen Receptor T Cell-Mediated Neurotoxicity in Nonhuman Primates. Cancer Discov 8:750-763
Ezekian, Brian; Schroder, Paul M; Freischlag, Kyle et al. (2018) Contemporary Strategies and Barriers to Transplantation Tolerance. Transplantation 102:1213-1222
Mathews, David V; Dong, Ying; Higginbotham, Laura B et al. (2018) CD122 signaling in CD8+ memory T cells drives costimulation-independent rejection. J Clin Invest 128:4557-4572
Kean, Leslie S; Turka, Laurence A; Blazar, Bruce R (2017) Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 276:192-212
Kwun, Jean; Manook, Miriam; Page, Eugenia et al. (2017) Crosstalk Between T and B Cells in the Germinal Center After Transplantation. Transplantation 101:704-712
Mathews, D V; Wakwe, W C; Kim, S C et al. (2017) Belatacept-Resistant Rejection Is Associated With CD28+ Memory CD8 T Cells. Am J Transplant 17:2285-2299
Manook, M; Kwun, J; Burghuber, C et al. (2017) Thrombalexin: Use of a Cytotopic Anticoagulant to Reduce Thrombotic Microangiopathy in a Highly Sensitized Model of Kidney Transplantation. Am J Transplant 17:2055-2064

Showing the most recent 10 out of 73 publications