Project 1 Mitochondrial targeting of anti-apoptotic GS-nitroxide drugs, including JP4-039, has demonstrated highly effective total body irradiation mitigation. Improved radiation mitigation can be achieved by supplementing other new small molecule radiation mitigators with distinct targets and times of effective action during the 24 ? 96 hrs after TBI. We have discovered 6 new small molecule TBI mitigators with mechanisms of action distinct from GS-nitroxides.
Specific Aim 1 tests the hypothesis that plasma and tissue signatures of total body irradiation, and their modulation by JP4-039 delivered at 24 hrs after TBI, can be used to direct the time for administration of each of 6 new small molecule radiation mitigators to provide additive or synergistic mitigation outcomes. The second specific aim tests the hypothesis that administration of GS-nitroxide, JP4-039, at 24 hrs after TBI, modifies the pharmacokinetics (PK) of the second mitigator drug, requiring further modification of time of sequential delivery. The third specific aim tests the hypothesis that signature directed and PK modified delivery of a sequence of radiation mitigator drugs, will be highly effective and safe in conventional as well as vulnerable populations.
All specific aims will utilize a novel topical biodegradable microneedle array delivery system for single application of multi-drug sequentially released drugs using different categories of microneedles each with different drug release characteristics. This translational project will take discovery and delivery of multiple radiation mitigators to the next level.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI068021-15
Application #
9757674
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2019-09-01
Budget End
2020-08-31
Support Year
15
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15260
Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina et al. (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341-3355
Conrad, Marcus; Kagan, Valerian E; Bayir, Hülya et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602-619
Stoyanovsky, Anastas D; Stoyanovsky, Detcho A (2018) 1-Oxo-2,2,6,6-tetramethylpiperidinium bromide converts ?-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. Sci Rep 8:15323
Zhou, Shuanhu; Glowacki, Julie (2018) Dehydroepiandrosterone and Bone. Vitam Horm 108:251-271
Robinson, Andria R; Yousefzadeh, Matthew J; Rozgaja, Tania A et al. (2018) Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 17:259-273
Gaschler, Michael M; Andia, Alexander A; Liu, Hengrui et al. (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507-515
Tyurina, Yulia Y; Shrivastava, Indira; Tyurin, Vladimir A et al. (2018) ""Only a Life Lived for Others Is Worth Living"": Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxid Redox Signal 29:1333-1358
Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Epand, Richard M et al. (2018) NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. Lab Invest 98:228-232
Willis, John; Epperly, Michael W; Fisher, Renee et al. (2018) Amelioration of Head and Neck Radiation-Induced Mucositis and Distant Marrow Suppression in Fanca-/- and Fancg-/- Mice by Intraoral Administration of GS-Nitroxide (JP4-039). Radiat Res 189:560-578
Leibowitz, Brian J; Yang, Liheng; Wei, Liang et al. (2018) Targeting p53-dependent stem cell loss for intestinal chemoprotection. Sci Transl Med 10:

Showing the most recent 10 out of 203 publications