We propose to investigate the mechanisms of the anti-viral innate immune response using single molecule fluorescence techniques in vitro and super-resolution imaging of cells. RIG-I (retinoic acid inducible gene-l) and related receptors were recently identified as the initial sensors for viral RNA that signal downstream molecules. RIG-I has a central DExD/H RNA helicase domain. The N-terminus possesses tandem CARDs (caspase activation and recruitment domains) that interact with a mitochondrial antiviral signaling protein (MAVS) and are ubiquitinated by TRIM25 E3 ligase. It also has a C-terminal regulatory domain (RD) that senses 5'triphosphate which is the primary signature of viral RNA. RIG-I also recognizes double stranded (ds) RNA as a viral signature. RIG-I is an RNA-dependent ATPase and its ATPase activity closely correlate with its signaling function. However, the role of its ATPase activity has remained a mystery. Using proteininduced fluorescence enhancement (PIPE) at the single molecule level in collaboration with Project 2. we found that RIG-I translocates rapidly and repeatedly on short dsRNA (20-50 bp). We also showed that its movement is slowed down by CARDs and accelerated by the presence of 5'triphosphate. Combined with previous studies that show a strong correlation between ATPase activity and RIG-I signaling, this data indicates that ATP-powered RNA translocation is essential for RIG-I signaling. In Project 3, we will address many of the outstanding questions such as how RIG-I discriminates between viral RNA and similar-looking host RNA molecules, what the role of RIG-l's ATPase activity is, how RIG-l's function is regulated by nucleic acid composition, what its interactions with other proteins are and how RIG-l's post-transcriptional and posttranslational modifications affect its function. There are three specific aims:
In Aim 1, we will investigate the RNA translocation activities of RIG-I like receptors.
In Aim 2, we will investigate RIG-I loading and oligomerization, and its conformational changes upon viral RNA recognition.
In Aim 3, we will investigate cellular location of RIG-I and its partners such as MAVS and viral RNA using live cell imaging and super-resolution imaging. In addition, RIG-I interaction with MAVS will be studied at the single molecule level in a reconstituted system.

Public Health Relevance

RIG-I like receptors are the primary sensor of viral RNA in the cytosol in all cell types and triggers downsteam signaling cascades leading interferon production as a first line of defense against viral infection. Our studies will provide a fundamental understanding of RIG-I pathway with unprecedented resolution and sensitivity, providing critical insights that may be used for developing new therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI083025-03
Application #
8261699
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
3
Fiscal Year
2011
Total Cost
$377,252
Indirect Cost
Name
University of Southern California
Department
Type
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Sánchez-Aparicio, Maria T; Feinman, Leighland J; García-Sastre, Adolfo et al. (2018) Paramyxovirus V Proteins Interact with the RIG-I/TRIM25 Regulatory Complex and Inhibit RIG-I Signaling. J Virol 92:
Do?anay, Sultan; Lee, Maurice Youzong; Baum, Alina et al. (2017) Single-cell analysis of early antiviral gene expression reveals a determinant of stochastic IFNB1 expression. Integr Biol (Camb) 9:857-867
Sánchez-Aparicio, Maria Teresa; Garcin, Dominique; Rice, Charles M et al. (2017) Loss of Sendai virus C protein leads to accumulation of RIG-I immunostimulatory defective interfering RNA. J Gen Virol 98:1282-1293
Chen, Chia-Lin; Huang, Jeffrey Y; Wang, Chun-Hsiang et al. (2017) Hepatitis C virus has a genetically determined lymphotropism through co-receptor B7.2. Nat Commun 8:13882
Nelson, Emily V; Schmidt, Kristina M; Deflubé, Laure R et al. (2016) Ebola Virus Does Not Induce Stress Granule Formation during Infection and Sequesters Stress Granule Proteins within Viral Inclusions. J Virol 90:7268-7284
Pisanelli, Giuseppe; Laurent-Rolle, Maudry; Manicassamy, Balaji et al. (2016) La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation. Virus Res 213:11-22
Zhang, Jichuan; Fei, Jingyi; Leslie, Benjamin J et al. (2015) Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells. Sci Rep 5:17295
Weber, Michaela; Sediri, Hanna; Felgenhauer, Ulrike et al. (2015) Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe 17:309-319
Wang, Linya; Tian, Yongjun; Ou, Jing-hsiung James (2015) HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog 11:e1004764
Lee, Jiyoung; Tian, Yongjun; Chan, Stephanie Tze et al. (2015) TNF-? Induced by Hepatitis C Virus via TLR7 and TLR8 in Hepatocytes Supports Interferon Signaling via an Autocrine Mechanism. PLoS Pathog 11:e1004937

Showing the most recent 10 out of 139 publications