The Environmental Surveillance Core (ESC) serves as a resource for fleld studies planned in the Epidemiology, Vector Biology and Parasitology projects. It provides an environmental and spatial context for sampling designs used in these projects and a framework to help ensure that these projects are well integrated with one another. The ESC uses various spatially registered data bases that are linked within a geographic information systems (GIS) environment to provide its sen/ice. For example, high resolution remotely sensed (RS) data are used to enumerate and locate households in either rural or periurban environments (depending on sampling needs) to provide both a sampling frame and representative samples for conducting population based studies. These environmental data also can be used to generate up to date information on various features, such as transportation networks, and temperature and precipitation regimes that are otherwise unavailable for the region under study. The ESC also links the outcomes of the population based studies with spatio-temporally associated environmental data that are used in subsequent analyses by the projects to identify factors associated with aspects of malaria transmission and disease. Additionally, the ESC can provide new, appropriately downscaled data for individual projects to test hypotheses as new theories are developed. For example, the ESC provides the ability to generate hydrologic models of water movement across the landscape to identify where water will accumulate. The ESC can combine the model results with field observations to identify the optimal model and data inputs, for various measures of malaria risk. The ESC uses a web-based system to incorporate the data sets generated by the project leaders and provide a mechanism both to link all the project data and the environmental data within a single context for data transfer and visualization.

Public Health Relevance

The Environmental Surveillance Core (ESC) provides an integrating framework for field studies in the Epidemiology, Vector Biology and Parasitology projects. It provides an explicit spatial framework for colocating collected data. In addition to providing a sampling iframe, it builds environmental databases that can be associated with the field study results and creates new data from environmental data that are ofthe appropriate spatial and temporal scales for local field studies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI089680-01
Application #
8009123
Study Section
Special Emphasis Panel (ZAI1-AWA-M (M2))
Project Start
2010-07-01
Project End
2017-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
1
Fiscal Year
2010
Total Cost
$107,715
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Kanyangarara, Mufaro; Hamapumbu, Harry; Mamini, Edmore et al. (2018) Malaria knowledge and bed net use in three transmission settings in southern Africa. Malar J 17:41
Zawada, Jacek W; Dahan-Moss, Yael L; Muleba, Mbanga et al. (2018) Molecular and physiological analysis of Anopheles funestus swarms in Nchelenge, Zambia. Malar J 17:49
Jones, Christine M; Lee, Yoosook; Kitchen, Andrew et al. (2018) Complete Anopheles funestus mitogenomes reveal an ancient history of mitochondrial lineages and their distribution in southern and central Africa. Sci Rep 8:9054
Pringle, Julia C; Carpi, Giovanna; Almagro-Garcia, Jacob et al. (2018) RTS,S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally. Sci Rep 8:6622
Searle, Kelly M; Lubinda, Jailos; Hamapumbu, Harry et al. (2017) Characterizing and quantifying human movement patterns using GPS data loggers in an area approaching malaria elimination in rural southern Zambia. R Soc Open Sci 4:170046
Searle, Kelly M; Katowa, Ben; Kobayashi, Tamaki et al. (2017) Distinct parasite populations infect individuals identified through passive and active case detection in a region of declining malaria transmission in southern Zambia. Malar J 16:154
Gibson, Lauren E; Markwalter, Christine F; Kimmel, Danielle W et al. (2017) Plasmodium falciparum HRP2 ELISA for analysis of dried blood spot samples in rural Zambia. Malar J 16:350
Ippolito, Matthew M; Searle, Kelly M; Hamapumbu, Harry et al. (2017) House Structure Is Associated with Plasmodium falciparum Infection in a Low-Transmission Setting in Southern Zambia. Am J Trop Med Hyg 97:1561-1567
Sutcliffe, Catherine G; Searle, Kelly; Matakala, Hellen K et al. (2017) Measles and Rubella Seroprevalence Among HIV-infected and Uninfected Zambian Youth. Pediatr Infect Dis J 36:301-306
Das, Smita; Muleba, Mbanga; Stevenson, Jennifer C et al. (2017) Beyond the entomological inoculation rate: characterizing multiple blood feeding behavior and Plasmodium falciparum multiplicity of infection in Anopheles mosquitoes in northern Zambia. Parasit Vectors 10:45

Showing the most recent 10 out of 61 publications