Innate immune cells lack the exquisite specificity of the adaptive immune system, yet in order to respond in a measured way, they must be able to tailor their activity to the specific pathogen. These cells have therefore evolved pattern recognition receptors (PRRs) that recognize conserved molecules characteristic of the microbe, which are not found within the host. Microorganisms contain multiple innate immune agonists and the macrophage response to live pathogens is shaped by the interaction of multiple signaling pathways. The aggregate response is complex and cannot be predicted from analysis of each pathway in isolation, however it is tractable using the tools of systems biology. In macrophages, this cross-regulation can arise from the simultaneous activation of multiple Toll-like receptors (TLRs). The group has demonstrated that the set of genes transcribed by simultaneous activation of the adaptor MyD88 (by TLR2, TLR4, TLR7, or TLR9) and the adaptor TICAM-1 (TRIF) (by TLR3 or TLR4) is not equivalent to the sum of the sets of genes that are activated by each adaptor alone. For example, a subset of genes whose induction is exclusive to a single adaptor is repressed by simultaneous activation of both adaptors. In their preliminary studies, the group determined that MyD88-dependent repression of TICAM-1-induced signaling is dependent on type I IFN. Multiple lines of evidence suggest that inflammatory and type I interferon pathways cross-regulate each other to shape the immune response although the precise mechanisms have yet to be fully defined. While the role of type I interferons has been extensively studied in viral infections, it has been increasingly appreciated that they also function in the response to bacteria. Understanding the cross- regulation between TLRs and type I interferon is particularly relevant to the pathogenesis of bacterial super- infection following viral infections. In this project, the Aderem laboratory will examine macrophages from mice with either targeted deletions or ENU-induced mutations in genes that our systems analysis has suggested as candidate regulators using a suite of tools that comprehensively characterize cross-regulation between TLR and IFNAR signaling in order to uncover molecules that regulate this phenomenon. They will define their mechanisms of action and impacts on their control of bacterial infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI100627-09
Application #
9999452
Study Section
Special Emphasis Panel (ZAI1)
Project Start
2012-09-01
Project End
2022-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
9
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Anchang, Benedict; Davis, Kara L; Fienberg, Harris G et al. (2018) DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity. Proc Natl Acad Sci U S A 115:E4294-E4303
Good, Zinaida; Sarno, Jolanda; Jager, Astraea et al. (2018) Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med 24:474-483
McAlpine, William; Sun, Lei; Wang, Kuan-Wen et al. (2018) Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function. Proc Natl Acad Sci U S A 115:E11523-E11531
Morin, Matthew D; Wang, Ying; Jones, Brian T et al. (2018) Diprovocims: A New and Exceptionally Potent Class of Toll-like Receptor Agonists. J Am Chem Soc 140:14440-14454
Johnson, Jarrod S; Lucas, Sasha Y; Amon, Lynn M et al. (2018) Reshaping of the Dendritic Cell Chromatin Landscape and Interferon Pathways during HIV Infection. Cell Host Microbe 23:366-381.e9
Goltsev, Yury; Samusik, Nikolay; Kennedy-Darling, Julia et al. (2018) Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 174:968-981.e15
Wagle, Mayura V; Marchingo, Julia M; Howitt, Jason et al. (2018) The Ubiquitin Ligase Adaptor NDFIP1 Selectively Enforces a CD8+ T Cell Tolerance Checkpoint to High-Dose Antigen. Cell Rep 24:577-584
Wang, Tao; Bu, Chun Hui; Hildebrand, Sara et al. (2018) Probability of phenotypically detectable protein damage by ENU-induced mutations in the Mutagenetix database. Nat Commun 9:441
Zhang, Duanwu; Tomisato, Wataru; Su, Lijing et al. (2017) Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5. Proc Natl Acad Sci U S A 114:E5197-E5206
Sun, Lei; Jiang, Zhengfan; Acosta-Rodriguez, Victoria A et al. (2017) HCFC2 is needed for IRF1- and IRF2-dependent Tlr3 transcription and for survival during viral infections. J Exp Med 214:3263-3277

Showing the most recent 10 out of 121 publications