The autophagy machinery has been shown to mediate host responses against a variety of infectious agents. These responses include the lysosomal degradation of specific pathogens via canonical autophagy, as well interferon-y-dependent killing of other pathogens via non-degradative pathways. Developing small molecules that enhance autophagy (ATG) protein-dependent pathways may have the potential to yield therapeutics against a broad spectrum of organisms. The proposed project applies next-generation synthetic chemistry and high-throughput screening to discover novel enhancers of ATG-mediated defense to pathogen infection. The project includes both phenotypic and target-based screens to discover modulators of autophagy and ATG-dependent processes, which will be tested for their activity against a range of pathogens of interest to the NIAID. Compounds with broad activity will be characterized for their mechanisms-of-action and developed further through medicinal chemistry to yield therapeutic leads suitable for testing treatment strategies in animal studies.
The development of therapeutics that prevent or treat infection by a broad range of pathogens is an urgent and unmet need for drug discovery. A drug that enhances the inherent ability of infected cells to clear pathogens within them may form the basis of a broad spectrum therapy, and represents a promising but untested strategy. The leads discovered in this project will enable the academic and pharmaceutical research communities to test, in animals, whether specific defense pathways (canonical and non-canonical autophagy) can be exploited for therapeutic benefit. .
Theisen, Derek J; Davidson 4th, Jesse T; Briseño, Carlos G et al. (2018) WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362:694-699 |
Mohanan, Vishnu; Nakata, Toru; Desch, A Nicole et al. (2018) C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science 359:1161-1166 |
Chiang, Wei-Chung; Wei, Yongjie; Kuo, Yi-Chun et al. (2018) High-Throughput Screens To Identify Autophagy Inducers That Function by Disrupting Beclin 1/Bcl-2 Binding. ACS Chem Biol 13:2247-2260 |
Peraro, Leila; Deprey, Kirsten L; Moser, Matthew K et al. (2018) Cell Penetration Profiling Using the Chloroalkane Penetration Assay. J Am Chem Soc 140:11360-11369 |
Nelson, Christopher A; Wilen, Craig B; Dai, Ya-Nan et al. (2018) Structural basis for murine norovirus engagement of bile acids and the CD300lf receptor. Proc Natl Acad Sci U S A 115:E9201-E9210 |
Fernández, Álvaro F; Sebti, Salwa; Wei, Yongjie et al. (2018) Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558:136-140 |
Radke, Joshua B; Burrows, Jeremy N; Goldberg, Daniel E et al. (2018) Evaluation of Current and Emerging Antimalarial Medicines for Inhibition of Toxoplasma gondii Growth in Vitro. ACS Infect Dis 4:1264-1274 |
Thackray, Larissa B; Handley, Scott A; Gorman, Matthew J et al. (2018) Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Rep 22:3440-3453.e6 |
Lassen, Kara G; Xavier, Ramnik J (2018) Mechanisms and function of autophagy in intestinal disease. Autophagy 14:216-220 |
Graham, Daniel B; Luo, Chengwei; O'Connell, Daniel J et al. (2018) Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat Med 24:1762-1772 |
Showing the most recent 10 out of 97 publications