There has been a dramatic rise in the number of severe fungal infections due to a constant increase in the number of individuals who are immunocompromised. Strong similarities in the basic eukaryotic metabolic pathways between fungi and mammalian cells have hindered the development of antifungal agents because many compounds that are effective at inhibiting fungal growth are also toxic to host cells. It is becoming clear that novel antifungal agents alone are unlikely to significantly reduce the mortality rate of fungal infections without the aid of new therapeutic approaches. Promising alternative approaches include combining current antifungal treatments with agents that enhance the host immune system's ability to eliminate the microbe or disrupt an interspecies molecular interaction that governs invasion. These approaches require a detailed understanding of the complex interaction between host and pathogen. This proposal will focus on three emerging fungal pathogens - Scedosporium spp, Candida auris and Mucorales fungi. Infections with these three phylogenetically distinct pathogens frequently fail to respond to currently available antifungal therapy and are therefore associated with extremely high mortality rates. Here we will combine dual-species RNA-seq, comparative genome analysis, established animal models and fungal genetics to systematically and comprehensively analyze the host-pathogen interactions for each class. Analyzing all three different types of fungi using the same approach will enable us to define commonalities as well as key differences among the organisms and the responses they elicit in the host. The proposed studies will provide a wealth of information regarding gene function and regulation in both the fungus and the host and will likely lead to the identification of novel therapeutic targets to treat this increasingly serious cause of human disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI110820-07
Application #
9901444
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
7
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Type
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Robertson, Colin D; Hazen, Tracy H; Kaper, James B et al. (2018) Phosphotyrosine-Mediated Regulation of Enterohemorrhagic Escherichia coli Virulence. MBio 9:
Ndungo, Esther; Randall, Arlo; Hazen, Tracy H et al. (2018) A Novel Shigella Proteome Microarray Discriminates Targets of Human Antibody Reactivity following Oral Vaccination and Experimental Challenge. mSphere 3:
Hazen, Tracy H; Mettus, Roberta; McElheny, Christi L et al. (2018) Diversity among blaKPC-containing plasmids in Escherichia coli and other bacterial species isolated from the same patients. Sci Rep 8:10291
Chung, Matthew; Teigen, Laura; Liu, Hong et al. (2018) Targeted enrichment outperforms other enrichment techniques and enables more multi-species RNA-Seq analyses. Sci Rep 8:13377
Watkins, Tonya N; Gebremariam, Teclegiorgis; Swidergall, Marc et al. (2018) Inhibition of EGFR Signaling Protects from Mucormycosis. MBio 9:
Andrianaki, Angeliki M; Kyrmizi, Irene; Thanopoulou, Kalliopi et al. (2018) Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat Commun 9:3333
Hazen, Tracy H; Mettus, Roberta T; McElheny, Christi L et al. (2018) Draft Genome Sequences of blaKPC-Containing Enterobacter aerogenes, Citrobacter freundii, and Citrobacter koseri Strains. Genome Announc 6:
Broxton, Chynna N; He, Bixi; Bruno, Vincent M et al. (2018) A role for Candida albicans superoxide dismutase enzymes in glucose signaling. Biochem Biophys Res Commun 495:814-820
Higginson, Ellen E; Ramachandran, Girish; Hazen, Tracy H et al. (2018) Improving Our Understanding of Salmonella enterica Serovar Paratyphi B through the Engineering and Testing of a Live Attenuated Vaccine Strain. mSphere 3:
Richter, Taylor K S; Hazen, Tracy H; Lam, Diana et al. (2018) Temporal Variability of Escherichia coli Diversity in the Gastrointestinal Tracts of Tanzanian Children with and without Exposure to Antibiotics. mSphere 3:

Showing the most recent 10 out of 55 publications