This innovative integrated systems biology application seeks to delineate the complex host/pathogen interactions occurring at the alveolar level that lead to unsuccessful response to therapy in serious pneumonia. To achieve this objective, we will leverage our unique access to alveolar fluid collected as part of routine clinical care in mechanically ventilated patients with suspected pneumonia in our medical intensive care unit. Bronchoalveolar lavage fluid will be obtained serially from well characterized mechanically ventilated patients with Pseudomonas or Acinetobacter pneumonia. Both of these CDC- designated serious hazard level pathogens have clinical failure rates as high as 50%. A robust clinical definition will allow comparison of both host and pathogen signatures associated with failure of therapy vs. success. These clinical specimens and extensive patient phenomics will anchor two mutually supportive and iterative research projects. Project One will deploy robust tools for flow sorting macrophage and lymphocyte subset populations, isolating RNA from these populations, and performing transcriptomic and epigenomic analysis to compare successful and unsuccessful host responses to infection. Project Two will focus on both specific pathogen genomic profiles associated with unsuccessful outcome. Changes in microbiome communities will be comprehensively assessed by shotgun deep sequencing to detect bacteriophage, other virus, and fungal DNA, in addition to bacterial. The Technology Core will perform cell sorting of NBBAL macrophage and lymphocyte subsets, RNA sequencing, and whole genome methylation, and perform parallel studies in a unique humanized alveolar macrophage mouse model. A Data Management and Bioinformatics Core will develop tools to reduce the dimensionality of these large comprehensive datasets, including the clinical phenomics, and provide them to the Modeling Core. The Modeling Core will then use innovative modeling approaches including a model of the alveolus during pneumonia as an ecosystem out of balance combined with unique machine learning tools and neural networks to generate biomarkers of host, pathogen and/or microbiome patterns predictive of successful pneumonia outcome. Predictive biomarkers developed in the Modeling Core will then be validated in a prospective confirmatory cohort of patients in whom analogous data will be generated. The Administrative Core will perform the outward-facing role of education and outreach to the community and sponsor, as well as regularly exchanging datasets, analytic tools, and specimens with NIH-sponsored/approved repository sites.

Public Health Relevance

The Successful Clinical Response In Pneumonia Treatment (SCRIPT) systems biology center seeks to delineate the complex host/pathogen interactions occurring at the alveolar level that lead to unsuccessful response to therapy in serious pneumonia. We will leverage our unique access to alveolar fluid collected as part of routine clinical care in mechanically ventilated patients to generate clinical phenomic, transcriptomic, epigenomic and metagenomic data that describe the host response, pathogen characteristics and microbiome of the alveolar space during pneumonia. We will then integrate this comprehensive phenotypic data into an ecosystem-based model to generate predictive biomarkers of pneumonia outcome for subsequent validation in a second cohort and tested for causality in a humanized alveolar macrophage mouse model.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI135964-03
Application #
9843971
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Shabman, Reed Solomon
Project Start
2018-01-17
Project End
2022-12-31
Budget Start
2020-01-01
Budget End
2020-12-31
Support Year
3
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Ozer, Egon A (2018) ClustAGE: a tool for clustering and distribution analysis of bacterial accessory genomic elements. BMC Bioinformatics 19:150
Morales-Nebreda, Luisa; McLafferty, Fred S; Singer, Benjamin D (2018) DNA methylation as a transcriptional regulator of the immune system. Transl Res :
Katoh, Masaru (2018) Multi?layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/??catenin signaling activation (Review). Int J Mol Med 42:713-725
Rutherford, Victoria; Yom, Kelly; Ozer, Egon A et al. (2018) Environmental reservoirs for exoS+ and exoU+ strains of Pseudomonas aeruginosa. Environ Microbiol Rep 10:485-492
Walter, James M; Wunderink, Richard G (2018) Testing for Respiratory Viruses in Adults With Severe Lower Respiratory Infection. Chest 154:1213-1222
Sala, Marc A; Balderas-Martínez, Yalbi Itzel; Buendía-Roldan, Ivette et al. (2018) Inflammatory pathways are upregulated in the nasal epithelium in patients with idiopathic pulmonary fibrosis. Respir Res 19:233
Walter, James M; Helmin, Kathryn A; Abdala-Valencia, Hiam et al. (2018) Multidimensional assessment of alveolar T cells in critically ill patients. JCI Insight 3:
Ozer, Egon A; Hauser, Alan R; Gerding, Dale N et al. (2017) Complete Genome Sequence of Clostridioides difficile Epidemic Strain DH/NAP11/106/ST-42, Isolated from Stool from a Pediatric Patient with Diarrhea. Genome Announc 5: