Gene expression provides a snapshot of the cellular changes that promote tumor malignancy. Quantitative gene expression analysis, especially as implemented by DNA microarrays, has proven to be an extremely valuable tool for cancer genome characterization, and has lead to the development of new genomic-based clinical tests. Our own experience with DNA microarrays to study gene expression patterns for breast, head &neck, and lung cancers has lead to the identification of novel subtypes of tumors with distinct patient outcomes and has identified new tumor suppressor genes. In the pilot phase of The Cancer Genome Atlas (TCGA) project, multiple platforms were used including tools to study gene expression (our role), tumor genomic DNA copy number alterations, SNP genotypes, DNA methylation and gene mutational analyses. Our collaborative efforts identified new tumor subtypes of glioblastoma and painted an integrated picture linking mutations to copy number changes to expression patterns, which identified biologically distinct subtypes of disease with differences in patient outcomes. For the second phase of TCGA project, we propose to continue to perform quantitative gene expression profiling of all protein-coding genes, non-protein coding mRNAs(ncRNAs) and microRNAs, on -2000 tumors per year. This approach has proven to be one of the most informative and comprehensive cancer genome characterization tools available. In addition, we propose to generate global chromatin organization profiles of cancer to identify regions of """"""""open"""""""" chromatin domains (nucleosome-depleted regions). We will use FAIRE (Formaldehyde-Assisted isolation of Regulatory Elements), a simple, low-cost method amenable to use on small quantities of solid tissue, coupled to next-generation DNA sequencing. Since the function of most histone modifications and chromatin remodeling activities is to regulate nucleosome occupancy, FAIRE effectively summarizes the functional output of such epigenetic mechanisms in a single robust assay. Lastly, we propose to perform integrated analyses of transcript levels with chromatin stoicture to map important regulatory elements, which can be distant to the transcript(s) that they regulate. Our study of genome-wide transcript regulation with chromatin organization will provide a critical portrait of the cancer genome that can be integrated with (and indeed can sometimes generate) other important data, including mutations and copy number events.
Cancer is a disease caused by changes in many different genes, and these genes can be altered (or mutated) in many different ways. One way in which alterations can cause cancer is to turn particular genes on, or turn others off. We propose to comprehensively study all human genes and determine their expression levels in cancer and normal tissues, and thus, identify those genes that are inappropriately on or off in the tumors. In addition, we will also study important structural characteristics of person's tumor DNA, and combine these data with our expression measurement in order to provide an improved mechanistic understanding of why certain cancer causing genes are inappropriately expressed.
Ellrott, Kyle; Bailey, Matthew H; Saksena, Gordon et al. (2018) Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Syst 6:271-281.e7 |
Campbell, Joshua D; Yau, Christina; Bowlby, Reanne et al. (2018) Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Rep 23:194-212.e6 |
Gao, Qingsong; Liang, Wen-Wei; Foltz, Steven M et al. (2018) Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Rep 23:227-238.e3 |
Thorsson, Vésteinn; Gibbs, David L; Brown, Scott D et al. (2018) The Immune Landscape of Cancer. Immunity 48:812-830.e14 |
Radovich, Milan; Pickering, Curtis R; Felau, Ina et al. (2018) The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 33:244-258.e10 |
Lei, Jonathan T; Shao, Jieya; Zhang, Jin et al. (2018) Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer. Cell Rep 24:1434-1444.e7 |
Shen, Hui; Shih, Juliann; Hollern, Daniel P et al. (2018) Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep 23:3392-3406 |
Berger, Ashton C; Korkut, Anil; Kanchi, Rupa S et al. (2018) A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell 33:690-705.e9 |
Matsunuma, Ryoichi; Chan, Doug W; Kim, Beom-Jun et al. (2018) DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Natl Acad Sci U S A 115:E11978-E11987 |
Hoadley, Katherine A; Yau, Christina; Hinoue, Toshinori et al. (2018) Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173:291-304.e6 |
Showing the most recent 10 out of 94 publications