We propose to operate a Genome Characterization Center for The Cancer Genome Atlas (TCGA) of the National Cancer Institute. Our goal is to characterize the genomes and transcriptomes of 10,000 human cancers over 5 years, together with the collaborators of TCGA Research Network. Given the ongoing revolution in genome analysis, our Center will transition from current-generation microarray technologies to next-generation sequencing technologies for cancer genome characterization. We will accomplish this by benchmarking the next-generation technologies against state-of-the-art array technologies used in the pilot project of TCGA. Our Center is uniquely qualified for this effort, because of our expertise in next-generation sequencing as well as current-generation microarray production and technology development, our knowledge and demonstrated accomplishments in cancer genomics, and our commitment to and experience with multi-institutional collaborations including the pilot project of TCGA. Specifically, we intend to accomplish the following aims for TCGA:
Aim 1. Using microarray technologies: Characterize DNA and RNA from 2000 cancer samples and appropriate controls during year 1.
Aim 2. Using next-generation sequencing: (i) Perform direct comparison and validation of the three alternative platforms during year 1, by characterizing DNA from 300 cancer/normal sample pairs and RNA from 100 cancer samples. (ii) Select the most cost-effective sequencing platform at the end of year 1, based on the results and in conjunction with NCI staff. (iii) Implement this sequencing platform to characterize DNA and RNA from 2000 cancer samples and appropriate controls in Years 2-5. (iv) Continue to decrease cost and increase resolution of genomic analysis.
Schaub, Franz X; Dhankani, Varsha; Berger, Ashton C et al. (2018) Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Syst 6:282-300.e2 |
Liu, Jianfang; Lichtenberg, Tara; Hoadley, Katherine A et al. (2018) An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 173:400-416.e11 |
Bailey, Matthew H; Tokheim, Collin; Porta-Pardo, Eduard et al. (2018) Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173:371-385.e18 |
Hmeljak, Julija; Sanchez-Vega, Francisco; Hoadley, Katherine A et al. (2018) Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov 8:1548-1565 |
Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua et al. (2018) Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 173:321-337.e10 |
Way, Gregory P; Sanchez-Vega, Francisco; La, Konnor et al. (2018) Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Rep 23:172-180.e3 |
Ricketts, Christopher J; De Cubas, Aguirre A; Fan, Huihui et al. (2018) The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Rep 23:313-326.e5 |
Knijnenburg, Theo A; Wang, Linghua; Zimmermann, Michael T et al. (2018) Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep 23:239-254.e6 |
Peng, Xinxin; Chen, Zhongyuan; Farshidfar, Farshad et al. (2018) Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Rep 23:255-269.e4 |
Huang, Kuan-Lin; Mashl, R Jay; Wu, Yige et al. (2018) Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 173:355-370.e14 |
Showing the most recent 10 out of 83 publications