Propagation and quantification of obligate intracellular pathogens are both labor-intensive and costly. Thesecharacteristics, coupled with C. burnetifs highly infectious nature and select agent designation, complicatethe most basic research endeavors. However, because highly purified and enumerated C. burnetii'sessential to the proposed research, a dedicated core facility with BSL-3 containment, highly trained technicalpersonnel, and an archival system is proposed. Thus, the purpose of the Core is to make available to eachof the 4 projects expertise in the cultivation, enumeration, and archival of phase 1 and 2 Coxiella burnetii.The core will be located at Montana State University, the location of the BSL-3 facilities, but will be headedby Mike Minnick of the University of Montana.Collaborations among projects. Core A will provide services to each of the 4 projects of the ProgramProject. These services will include making standardized inocula of phase 1 and 2 Coxiella available to allthe cores, as well of the services of Coxiella enumeration and archival of Coxiella organisms. In addition,projects 2, 3 and 4 have no experience with working with Coxiella, thus, the Core will provide this additionalcritical service to those projects. Therefore, the core is integral and critical to the goals of each of theprojects and the goal of the Program Project.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI065357-04
Application #
7641042
Study Section
Special Emphasis Panel (ZAI1)
Project Start
2008-05-01
Project End
2009-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
4
Fiscal Year
2008
Total Cost
$227,642
Indirect Cost
Name
Colorado State University-Fort Collins
Department
Type
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Webb, Jessica R; Price, Erin P; Somprasong, Nawarat et al. (2018) Development and validation of a triplex quantitative real-time PCR assay to detect efflux pump-mediated antibiotic resistance in Burkholderia pseudomallei. Future Microbiol 13:1403-1418
York, Joanne; Nunberg, Jack H (2018) A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity. Methods Mol Biol 1604:157-167
Rhodes, Katherine A; Somprasong, Nawarat; Podnecky, Nicole L et al. (2018) Molecular determinants of Burkholderia pseudomallei BpeEF-OprC efflux pump expression. Microbiology 164:1156-1167
Cummings, Jason E; Slayden, Richard A (2017) Transient In Vivo Resistance Mechanisms of Burkholderia pseudomallei to Ceftazidime and Molecular Markers for Monitoring Treatment Response. PLoS Negl Trop Dis 11:e0005209
Pettey, W B P; Carter, M E; Toth, D J A et al. (2017) Constructing Ebola transmission chains from West Africa and estimating model parameters using internet sources. Epidemiol Infect 145:1993-2002
Furuta, Yousuke; Komeno, Takashi; Nakamura, Takaaki (2017) Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 93:449-463
Skyberg, Jerod A; Lacey, Carolyn A (2017) Hematopoietic MyD88 and IL-18 are essential for IFN-?-dependent restriction of type A Francisella tularensis infection. J Leukoc Biol 102:1441-1450
Plumley, Brooke A; Martin, Kevin H; Borlee, Grace I et al. (2017) Thermoregulation of Biofilm Formation in Burkholderia pseudomallei Is Disrupted by Mutation of a Putative Diguanylate Cyclase. J Bacteriol 199:
Randall, Linnell B; Georgi, Enrico; Genzel, Gelimer H et al. (2017) Finafloxacin overcomes Burkholderia pseudomallei efflux-mediated fluoroquinolone resistance. J Antimicrob Chemother 72:1258-1260
Podnecky, Nicole L; Rhodes, Katherine A; Mima, Takehiko et al. (2017) Mechanisms of Resistance to Folate Pathway Inhibitors in Burkholderia pseudomallei: Deviation from the Norm. MBio 8:

Showing the most recent 10 out of 258 publications