This Project builds upon the strengths of the Katze laboratory in genomics, proteomics, and bioinformatics to develop systems level views of the virus-host interactions and viral and host genetic determinants that regulate and determine the outcome of infection. To achieve this goal, we will work closely with investigators from the University of North Carolina (Project 3.1) and the University of Wisconsin (Project 3.2) who will be using infection models of SARS-CoV, influenza, and Ebola viruses. In addition to the extensive amount of microarray data that we will be collecting on these infection models, we will integrate proteomics, metabolomics, and lipidomics data that will also be available for selected infection models.
In Aim 1, we will use gene expression data to obtain expression quantitative trait loci (eQTL) mapping in screens of 400 genetically distinct mice, comparing the infection outcomes with SARS-CoV, influenza, and Ebola viruses.
Aim 2 generates a systems level view of viral virulence and disease progression from more detailed animal models;data integration is a key aspect to make optimal use of genomic and proteomic data for better understanding gene and protein function, as well as discerning how gene expression and protein abundance changes correlate with innate and adaptive immune responses and eventual disease outcome.
In Aim 3, we will use genomic approaches to furnish a comprehensive view of the changes in host gene expression that occur in response to the Ebola virus immunization regimens described in Project 3.2. These data may suggest genomic markers of protective immunity or indicate the predisposition of an animal to a particular response to immunization and subsequent challenge. Together, these aims provide an integrated approach that markedly enhances synergy among the collaborating projects by allowing us and our collaborators to place experimental findings in the context of a more comprehensive picture of the infection process. In addition, our high-throughput studies are likely to provide molecular signatures that predict protective immunity or pathology, candidate biomarkers for diagnostic or prognostic assays, and a rational basis for improvements to antiviral therapies or vaccine strategies.

Public Health Relevance

Treatment and vaccination options for these highly virulent viruses are either non-existent or work poorly. Our proposed studies will provide a better understanding of how the innate and adaptive immune responses recognize and fight these viruses, which will suggest new drug development and vaccination strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54AI081680-03
Application #
8234065
Study Section
Special Emphasis Panel (ZAI1)
Project Start
2011-03-01
Project End
2014-02-28
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
3
Fiscal Year
2011
Total Cost
$960,510
Indirect Cost
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Smithey, Megan J; Venturi, Vanessa; Davenport, Miles P et al. (2018) Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection. Proc Natl Acad Sci U S A 115:E6817-E6825
Maurizio, Paul L; Ferris, Martin T; Keele, Gregory R et al. (2018) Bayesian Diallel Analysis Reveals Mx1-Dependent and Mx1-Independent Effects on Response to Influenza A Virus in Mice. G3 (Bethesda) 8:427-445
Uhrlaub, Jennifer L; Smithey, Megan J; Nikolich-Žugich, Janko (2017) Cutting Edge: The Aging Immune System Reveals the Biological Impact of Direct Antigen Presentation on CD8 T Cell Responses. J Immunol 199:403-407
Pryke, Kara M; Abraham, Jinu; Sali, Tina M et al. (2017) A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. MBio 8:
Bottomly, Daniel; Wilmot, Beth; McWeeney, Shannon K (2015) plethy: management of whole body plethysmography data in R. BMC Bioinformatics 16:134
Gralinski, Lisa E; Ferris, Martin T; Aylor, David L et al. (2015) Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genet 11:e1005504
Okumura, Atsushi; Rasmussen, Angela L; Halfmann, Peter et al. (2015) Suppressor of Cytokine Signaling 3 Is an Inducible Host Factor That Regulates Virus Egress during Ebola Virus Infection. J Virol 89:10399-406
LaBeaud, A Desiree; Banda, Tamara; Brichard, Julie et al. (2015) High rates of o'nyong nyong and Chikungunya virus transmission in coastal Kenya. PLoS Negl Trop Dis 9:e0003436
Mirrashidi, Kathleen M; Elwell, Cherilyn A; Verschueren, Erik et al. (2015) Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host Microbe 18:109-21
Davis, Zoe H; Verschueren, Erik; Jang, Gwendolyn M et al. (2015) Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol Cell 57:349-60

Showing the most recent 10 out of 127 publications