Many human cancers contain regions of hypoxia, resulting in cell death and establishing a selection for cancer cells. Cancer cells adapt to the hypoxic microenvironment is through the activity of the transcription factor hypoxia-inducible factor 1 (HIF-1). HIF-1 also plays a critical role in tumor vascularization by activation of endothelial progenitors and cells. Project 1 will investigate the functional interactions between HIF-1 and extracellular matrix (ECM), both in cancer cells and in endothelial progenitors and cells. This is a unique perspective that takes into account how one aspect of the tumor microenvironment (02 concentration) regulates and interacts with another (mechanical properties of the ECM) to alter the cancer cell phenotype. The combined utilization of biophysical, biochemical, biological, computational, and engineering approaches that we propose will provide new insights into the mechanisms underlying metastasis.
The Specific Aims are: (1) To determine whether alterations in mechanical properties of the ECM alter the phenotype of cancer cells.(2) To determine whether hypoxia and/or increased HIF-1 activity induces changes in mechanical properties of the ECM, which in turn alter the phenotype of cancer cells. (3) To determine whether alterations in mechanical properties of the ECM regulate HIF-1 activity, leading to alterations in cancer cell phenotype. (4) To determine whether changes in ECM mechanical properties alter the phenotype of endothelial progenitors and cells. (5) To determine whether HIF-1-induced changes in ECM mechanical properties alter the phenotype of endothelial progenitors and cells. Linkage to PS-OC:
The research aims of Project 1 fit the overarching theme of the Center of the cooperative role of HIF-1 and EMC in the metastatic cascade;
Aims 1 and 2 are synergistically connected to Aims 1-4 in Project 2 and Aims 1 and 2 in Project 3 for further research integration of the Center;all Students and Fellows in the Project will be enrolled in the Center Training Program;this project will make use of the resources provided by the Imaging Core, as well as the Administrative Unit of the Center;cell lines and micromechanical methods will be the same as those used in all projects;computational efforts will be shared among all projects.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143868-05
Application #
8548261
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$1,185,402
Indirect Cost
$851,694
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Jayatilaka, Hasini; Giri, Anjil; Karl, Michelle et al. (2018) EB1 and cytoplasmic dynein mediate protrusion dynamics for efficient 3-dimensional cell migration. FASEB J 32:1207-1221
Jayatilaka, Hasini; Umanzor, Fatima G; Shah, Vishwesh et al. (2018) Tumor cell density regulates matrix metalloproteinases for enhanced migration. Oncotarget 9:32556-32569
Lan, Tian; Hung, Shen-Hsiu; Su, Xudong et al. (2018) Integrating transient cellular and nuclear motions to comprehensively describe cell migration patterns. Sci Rep 8:1488
Kim, Jeong-Ki; Louhghalam, Arghavan; Lee, Geonhui et al. (2017) Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun 8:2123
Ju, Julia A; Godet, InĂªs; Ye, I Chae et al. (2017) Hypoxia Selectively Enhances Integrin ?5?1 Receptor Expression in Breast Cancer to Promote Metastasis. Mol Cancer Res 15:723-734
He, Lijuan; Sneider, Alexandra; Chen, Weitong et al. (2017) Mammalian Cell Division in 3D Matrices via Quantitative Confocal Reflection Microscopy. J Vis Exp :
Lan, Tian; Cheng, Kai; Ren, Tina et al. (2016) Displacement correlations between a single mesenchymal-like cell and its nucleus effectively link subcellular activities and motility in cell migration analysis. Sci Rep 6:34047
Lee, Pilhwa; Wolgemuth, Charles W (2016) Physical Mechanisms of Cancer in the Transition to Metastasis. Biophys J 111:256-66
Semenza, Gregg L (2016) The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim Biophys Acta 1863:382-391
Zhang, Kun; Grither, Whitney R; Van Hove, Samantha et al. (2016) Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts. J Cell Sci 129:1989-2002

Showing the most recent 10 out of 182 publications