We propose to continue a nationally visible and responsive center focused on the development of novel fluorescent biosensor and detection technologies for investigating pathways and networks in real time and high spatial resolution in living cells. The renewed center retains the combined experience and infrastructure of two existing centers in Pittsburgh: the Molecular Biosensors and Imaging Center at Carnegie Mellon University and the Center for Biologic Imaging at the University of Pittsburgh. The Technology Development (Core 1) component of the center will create a powerful toolbox of intracellular fluorescent biosensors and reporters that can be used to study many, if not all, of the pathway proteins and activities in living cells. This fluorescent biosensor development program integrates efforts across multiple disciplines, including dye chemistry, molecular biology, biochemistry, structural biology, modeling, cell biology, image acquisition and analysis, and high throughput screening. We have made substantial progress in this effort during the previous 3 years of funding. Four exciting Driving Biology Projects (Core 2) are essential to the technology development effort in Core 1. These DBPs are focused on important and currently un-addressable biological problems, and will serve both as test-beds for the technology and compelling demonstrations of the value of the biosensors and reporters developed in this program. The Infrastructure (Core 3) is provided through the Center for Biologic Imaging at the University of Pittsburgh. The role of the CBI is to act as the application and outreach ami of the project as a whole by testing the new biosensors with challenging biological problems. During the last cycle of this proposal the clear mission of the CBI evolved to become the catalyst in probe implementation, and to strengthen and broaden the impact of the new probes developed by MBIC. This is achieved by providing facilities and expertise to test and validate the probes in the context of the driving biological projects, and ultimately, the biomedical research community at large. The program contains a significant technology transfer component to disseminate concepts, knowledge, software, materials, and resources to users in both academic research labs and industry. This is achieved in our Infrastructure, Training, and Dissemination cores (Core 3,4, 5) and through the technology transfer activities in the Management core (Core 6).

Public Health Relevance

Understanding the regulation of proteins in networks and pathways is central to diagnosing, treating and curing a variety of human diseases. This program develops a new set of tools for observing this regulation process in live cells, as it occurs, and will lead to fundamental advances in technology, biological knowledge, and drug discovery.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
8U54GM103529-08
Application #
8318806
Study Section
Special Emphasis Panel (ZRG1-BST-D (50))
Program Officer
Sheeley, Douglas
Project Start
2005-09-30
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
8
Fiscal Year
2012
Total Cost
$3,148,749
Indirect Cost
$750,366
Name
Carnegie-Mellon University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Hager, Natalie A; Krasowski, Collin J; Mackie, Timothy D et al. (2018) Select ?-arrestins control cell-surface abundance of the mammalian Kir2.1 potassium channel in a yeast model. J Biol Chem 293:11006-11021
Perkins, Lydia A; Yan, Qi; Schmidt, Brigitte F et al. (2018) Genetically Targeted Ratiometric and Activated pH Indicator Complexes (TRApHIC) for Receptor Trafficking. Biochemistry 57:861-871
Gallo, Eugenio; Jarvik, Jonathan W (2017) Breaking the color barrier - a multi-selective antibody reporter offers innovative strategies of fluorescence detection. J Cell Sci 130:2644-2653
Shiwarski, Daniel J; Darr, Marlena; Telmer, Cheryl A et al. (2017) PI3K class II ? regulates ?-opioid receptor export from the trans-Golgi network. Mol Biol Cell 28:2202-2219
Vasilev, Kalin V; Gallo, Eugenio; Shank, Nathaniel et al. (2016) Novel Biosensor of Membrane Protein Proximity Based on Fluorogen Activated Proteins. Comb Chem High Throughput Screen 19:392-9
Sparvero, Louis J; Amoscato, Andrew A; Fink, Arthur B et al. (2016) Imaging mass spectrometry reveals loss of polyunsaturated cardiolipins in the cortical contusion, hippocampus, and thalamus after traumatic brain injury. J Neurochem 139:659-675
He, Jianjun; Wang, Yi; Missinato, Maria A et al. (2016) A genetically targetable near-infrared photosensitizer. Nat Methods 13:263-8
Schwartz, Samantha L; Yan, Qi; Telmer, Cheryl A et al. (2015) Fluorogen-activating proteins provide tunable labeling densities for tracking Fc?RI independent of IgE. ACS Chem Biol 10:539-46
Snyder, Joshua C; Pack, Thomas F; Rochelle, Lauren K et al. (2015) A rapid and affordable screening platform for membrane protein trafficking. BMC Biol 13:107
Telmer, Cheryl A; Verma, Richa; Teng, Haibing et al. (2015) Rapid, specific, no-wash, far-red fluorogen activation in subcellular compartments by targeted fluorogen activating proteins. ACS Chem Biol 10:1239-46

Showing the most recent 10 out of 84 publications