The Implications of Dystrophin-Speclfic T cells for DMD Gene Correction Proof-of-principle studies in mouse and dog models of Ducheime muscular dystrophy (DMD) have established that gene replacement therapy is a promising treatment strategy. Attempts to apply the tenets learned from pre-clinical to clinical protocols did not predict dystrophin-specific T cells targeting novel epitopes on muscle fibers downstream of the mutation. In one case these were expressed on revertant fibers, a finding contrary to the axiom that forecasts a tolerizing role for these fibers. Another treatment paradigm, gentamicin-induced mutation suppression, proved equally confounding because dystrophin-specific T cells were isolated fi-om the blood and muscle following treatment. These observations require further study to achieve success in gene correction strategies for DMD.
In Aim 1 we will characterize the properties of dystrophin-specific T cells in the blood and muscle of DMD patients with well characterized mutations to determine how many patients exhibit cellular immunity to dystrophin and define the location of cognate selfepitopes within the mutated dystrophin protein. We will examine the effector fimctions of CD4+ and CD8+ T cells that are dystrophin specific.
In Aim 2 we will look specifically at the role of glucocorticoids in modulating T cell response in a designated three-month treatment program of naive subjects. Here we anticipate a T cell phenotype change fi-om effector/inflammatory to a regulatory/suppressor role.
In Aim 3 we will perform a vascular delivery clinical gene transfer study using AAVS.MCK.micro-dystrophin. We can achieve high levels of muscle fiber transduction through vascular delivery of transgene to specific leg muscles in the rhesus macaque. This sets the stage for clinical efficacy. The study inclusion criteria include currently identified immune barriers based on prior experience and will add findings that emerge from Projects 1 and 2.

Public Health Relevance

Finding a treatment for Duchenne muscular dystrophy through gene correction strategies is a major research goal that has been confounded by the immime system. This project targets important questions related to: 1) immunological barriers to successful gene correction;2) addresses the interface of the immune system with glucocorticoid treatment, the only known effective treatment for the disease;and 3) tests the potential for overcoming immune barriers that are known and will be ascertained during this project to achieve successful gene replacement therapy through vascular delivery.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HD066409-05
Application #
8685777
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Nationwide Children's Hospital
Department
Type
DUNS #
City
Columbus
State
OH
Country
United States
Zip Code
43205
Giesige, Carlee R; Wallace, Lindsay M; Heller, Kristin N et al. (2018) AAV-mediated follistatin gene therapy improves functional outcomes in the TIC-DUX4 mouse model of FSHD. JCI Insight 3:
Mendell, Jerry R; Sahenk, Zarife; Al-Zaidy, Samiah et al. (2017) Follistatin Gene Therapy for Sporadic Inclusion Body Myositis Improves Functional Outcomes. Mol Ther 25:870-879
Eidahl, Jocelyn O; Giesige, Carlee R; Domire, Jacqueline S et al. (2016) Mouse Dux is myotoxic and shares partial functional homology with its human paralog DUX4. Hum Mol Genet 25:4577-4589
Sondergaard, Patricia C; Griffin, Danielle A; Pozsgai, Eric R et al. (2015) AAV.Dysferlin Overlap Vectors Restore Function in Dysferlinopathy Animal Models. Ann Clin Transl Neurol 2:256-70
Mendell, Jerry R; Sahenk, Zarife; Malik, Vinod et al. (2015) A phase 1/2a follistatin gene therapy trial for becker muscular dystrophy. Mol Ther 23:192-201
Heller, Kristin N; Montgomery, Chrystal L; Shontz, Kimberly M et al. (2015) Human ?7 Integrin Gene (ITGA7) Delivered by Adeno-Associated Virus Extends Survival of Severely Affected Dystrophin/Utrophin-Deficient Mice. Hum Gene Ther 26:647-56
Al-Zaidy, Samiah A; Sahenk, Zarife; Rodino-Klapac, Louise R et al. (2015) Follistatin Gene Therapy Improves Ambulation in Becker Muscular Dystrophy. J Neuromuscul Dis 2:185-192
Chicoine, Louis G; Rodino-Klapac, Louise R; Shao, Guohong et al. (2014) Vascular delivery of rAAVrh74.MCK.GALGT2 to the gastrocnemius muscle of the rhesus macaque stimulates the expression of dystrophin and laminin ?2 surrogates. Mol Ther 22:713-24
Yalvac, Mehmet E; Arnold, William David; Hussain, Syed-Rehan A et al. (2014) VIP-expressing dendritic cells protect against spontaneous autoimmune peripheral polyneuropathy. Mol Ther 22:1353-1363
Chicoine, L G; Montgomery, C L; Bremer, W G et al. (2014) Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol Ther 22:338-347

Showing the most recent 10 out of 15 publications