The identification of mutations causing Mendelian diseases has revolutionized the understanding of diseases of every organ system. While over 3,000 such diseases have been solved at the molecular level, with 21,000 genes in the human genome and about 15% embryonic lethal loci, it is clear that many remain to be discovered. This includes both described and presently undescribed human traits that contribute to both health and disease. With the spectacular 6-log drop in the cost of DNA sequencing over the last 12 years, it has become apparent that selectively sequencing all of the genes in the genome, which comprise only ~1 % of the human genome represents a very cost-effective means for discovering the basis of new Mendelian diseases. We have pioneered the development of the exome sequencing method as well as the tools for analysis, and have shown that both are scalable, with current cost under $1,500 per exome and expected to be under $1,000 in the near future. We have demonstrated the utility of this approach with the identification of a range of disease genes that were previously intractable due to difficulties in gene mapping owing to high locus heterogeneity, de novo mutations, or small one-of-a-kind families. These considerations motivate new efforts to efficiently solve substantially all Mendelian traits using these technologies. To this end we have established the Yale Center for Mendelian Disorders which will ascertain and acquire samples from patients and families with known or suspected Mendelian diseases, sequence exomes to high coverage sufficient to call 95% of all variants with high specificity and use new analytic approaches we have devised to identify new Mendelian trait genes. We will make all sequences available to the research community as allowed and will establish a Web interface to enable physicians and investigators to submit research samples and retrieve annotated results. These studies will rapidly expand our understanding of the genes and pathways underlying human disease.

Public Health Relevance

Sequencing all of the genes in the genome is a new method for discovering gene mutations that cause specific human diseases. The discovery of the inherited basis for those diseases that are caused by a single mutation provides a foundation for the understanding of human health and disease and identifies specific biochemical pathways that might be altered for health benefit, as well as new tools for early diagnosis.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
3U54HG006504-03S1
Application #
8917008
Study Section
Special Emphasis Panel (ZHG1-HGR-P (O2))
Program Officer
Wang, Lu
Project Start
2011-12-05
Project End
2015-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
3
Fiscal Year
2014
Total Cost
$75,000
Indirect Cost
Name
Yale University
Department
Genetics
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
van der Ven, Amelie T; Connaughton, Dervla M; Ityel, Hadas et al. (2018) Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract. J Am Soc Nephrol 29:2348-2361
Daga, Ankana; Majmundar, Amar J; Braun, Daniela A et al. (2018) Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93:204-213
Scholl, Ute I; Stölting, Gabriel; Schewe, Julia et al. (2018) CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 50:349-354
Marin-Valencia, Isaac; Novarino, Gaia; Johansen, Anide et al. (2018) A homozygous founder mutation in TRAPPC6B associates with a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features. J Med Genet 55:48-54
Ghosh, Shereen G; Becker, Kerstin; Huang, He et al. (2018) Biallelic Mutations in ADPRHL2, Encoding ADP-Ribosylhydrolase 3, Lead to a Degenerative Pediatric Stress-Induced Epileptic Ataxia Syndrome. Am J Hum Genet 103:431-439
Hermle, Tobias; Schneider, Ronen; Schapiro, David et al. (2018) GAPVD1 and ANKFY1 Mutations Implicate RAB5 Regulation in Nephrotic Syndrome. J Am Soc Nephrol 29:2123-2138
Shashi, Vandana; Magiera, Maria M; Klein, Dennis et al. (2018) Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration. EMBO J 37:
Craiglow, Brittany G; Boyden, Lynn M; Hu, Ronghua et al. (2018) CARD14-associated papulosquamous eruption: A spectrum including features of psoriasis and pityriasis rubra pilaris. J Am Acad Dermatol 79:487-494
Warejko, Jillian K; Schueler, Markus; Vivante, Asaf et al. (2018) Whole Exome Sequencing Reveals a Monogenic Cause of Disease in ?43% of 35 Families With Midaortic Syndrome. Hypertension 71:691-699
Warejko, Jillian K; Tan, Weizhen; Daga, Ankana et al. (2018) Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 13:53-62

Showing the most recent 10 out of 96 publications