The myotonic dystrophies (DM1 and DM2), which are the most common form of adult-onset muscular dystrophy, are autosomal dominant diseases with similar clinical presentations. Remarkably, DM1 and DM2 are caused by unstable microsatellite expansions in the untranslated regions of two different genes, DMPK and ZNF9. To explain how these non-coding expansion mutations lead to dominantly inherited neuromuscular disorders, we have proposed a toxic RNA model for the myotonic dystrophies. Transcription of the mutant DM1 (CTG)n and DM2 (CCTG)n alleles leads to the production of unusual RNA transcripts with (CUG)n and (CCUG)n repeat expansions. These expansions fold into stable double-stranded (ds) RNA structures that recruit and then sequester a family of dsRNA-binding factors, the muscleblind proteins. Because this toxic RNA model suggests that DM1 and DM2 diseases are due to loss of muscleblind protein function, we have derived muscleblind 1 (Mbnl1) knockout mice. This proposal is designed to test our working hypothesis that Mbnl1-/- knockout mice will be a useful model to examine underlying molecular mechanisms involved in myotonic dystrophy disease pathogenesis. First, we will characterize the Mbnl1-/-muscle phenotype and test the hypothesis that Mbnl1 is required for proper alternative splicing and function of the chloride channel CIC-1. Deficiency of this ion channel has been recently implicated as the cause of DM1- and DM2- associated myotonia. The stoichiometric relationship between toxic RNA and binding protein will be examined by breeding Mbnll knockout mice with lines of transgenic mice that express (CUG)n RNA at different levels. Second, the possibility that muscleblind proteins influence CIC-1 chloride channel levels by interacting with alternative splicing, and/or other, factors will be examined. Third, the hypothesis that the myotonia phenotype can berescued using recombinant adeno-associated virus mediated expression of wild type adult CIC-1 will be tested. Finally, we will investigate if additional disease-associated phenotypes result from deletion of the entire Mbnl1 gene, from tissue-specific Mbnl1 expression or from combinatorial loss of all three muscleblind (Mbnl1, Mbnl2/Mbnll, Mbnl3/Mblx) genes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54NS048843-04
Application #
7554054
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2006-06-01
Budget End
2007-05-31
Support Year
4
Fiscal Year
2006
Total Cost
$290,380
Indirect Cost
Name
University of Rochester
Department
Type
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Carrell, Samuel T; Tang, Zhenzhi; Mohr, Sabine et al. (2018) Detection of expanded RNA repeats using thermostable group II intron reverse transcriptase. Nucleic Acids Res 46:e1
Trembley, Michael A; Quijada, Pearl; Agullo-Pascual, Esperanza et al. (2018) Mechanosensitive Gene Regulation by Myocardin-Related Transcription Factors Is Required for Cardiomyocyte Integrity in Load-Induced Ventricular Hypertrophy. Circulation 138:1864-1878
Auerbach, David S; Biton, Yitschak; Polonsky, Bronislava et al. (2018) Risk of cardiac events in Long QT syndrome patients when taking antiseizure medications. Transl Res 191:81-92.e7
Sznajder, ?ukasz J; Thomas, James D; Carrell, Ellie M et al. (2018) Intron retention induced by microsatellite expansions as a disease biomarker. Proc Natl Acad Sci U S A 115:4234-4239
Wood, Libby; Bassez, Guillaume; Bleyenheuft, Corinne et al. (2018) Eight years after an international workshop on myotonic dystrophy patient registries: case study of a global collaboration for a rare disease. Orphanet J Rare Dis 13:155
Skov, Martin; Dirksen, Robert T (2017) Trojan triplets: RNA-based pathomechanisms for muscle dysfunction in Huntington's disease. J Gen Physiol 149:49-53
Pinto, Belinda S; Saxena, Tanvi; Oliveira, Ruan et al. (2017) Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9. Mol Cell 68:479-490.e5
Thornton, Charles A; Wang, Eric; Carrell, Ellie M (2017) Myotonic dystrophy: approach to therapy. Curr Opin Genet Dev 44:135-140
Gadalla, S M; Hilbert, J E; Martens, W B et al. (2017) Pigmentation phenotype, photosensitivity and skin neoplasms in patients with myotonic dystrophy. Eur J Neurol 24:713-718
Jauvin, Dominic; Chrétien, Jessina; Pandey, Sanjay K et al. (2017) Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice. Mol Ther Nucleic Acids 7:465-474

Showing the most recent 10 out of 88 publications