Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the US, yet currently there exist no treatments that can slow or prevent disease progression. A pathognomonic feature of COPD is the presence of sustained actions of bioactive mediators (e.g. matrix metalloproteinase (MMPs), and inflammasome-derived cytokines (IL-1 ?)) that produce chronic, unrelenting, airway inflammation and injury thereby contributing to the pathobiology of disease. We recently discovered a novel pathway for immunity through protein ubiquitination whereby a pro-inflammatory protein, called FBXO3 profoundly triggers cytokine secretion from cells (Nature Immunology 14:470-9, 2013). By targeting FBXO3, we developed a novel genus of small molecule inhibitors. Our pilot data indicate that (i) our lead drug, BC-1261, reduces circulating cytokines, alveolar inflammation, and prevents emphysema in a cigarette smoke exposure (CSE)-induced COPD murine model, (ii) that FBXO3 inhibitors inhibit CSE induced MMP and inflammasome activity, and that (iii) we have target validation where compared to wild-type FBXO3, COPD subjects with a naturally occurring protective, hypofunctional FBXO3 polymorphism (FBXO3V221I) have reduced cytokine levels, less severe emphysema, and disease progression. Hence, we will characterize BC-1261 as a new anti-inflammatory chemical entity for use in COPD preclinical models (UH2 Component), and demonstrate that BC-1261 exerts an optimal safety and drug product profile for in vivo use (UH3 Component). This application unveils a new molecular target (FBXO3) underlying COPD pathogenesis and a unique first-in-class compound targeting the ubiquitin-proteasome system for COPD. Execution of these studies will be the basis of a drug development program that will lead to a fundamental, paradigm-changing therapeutic advance for treatment of inflammation leading to an IND application setting the stage for a new translational initiative in COPD subjects.
Emphysema and chronic bronchitis are major causes of death in the US and there are few treatments that prevent inflammation and slow disease progression. This inflammation is caused from the release of proteins, called cytokines and proteinases. We have discovered a new pathway of inflammation and discovered a unique drug that combats inflammation in emphysema. This discovery led us to propose a drug development program that eventually seeks approval by the FDA.
Meiners, Silke; Evankovich, John; Mallampalli, Rama K (2018) The ubiquitin proteasome system as a potential therapeutic target for systemic sclerosis. Transl Res 198:17-28 |
Evankovich, John; Lear, Travis; Mckelvey, Alison et al. (2017) Receptor for advanced glycation end products is targeted by FBXO10 for ubiquitination and degradation. FASEB J 31:3894-3903 |
Londino, James D; Gulick, Dexter L; Lear, Travis B et al. (2017) Post-translational modification of the interferon-gamma receptor alters its stability and signaling. Biochem J 474:3543-3557 |
Bednash, Joseph S; Weathington, Nathaniel; Londino, James et al. (2017) Targeting the deubiquitinase STAMBP inhibits NALP7 inflammasome activity. Nat Commun 8:15203 |