Multiple sclerosis (MS) is the most common disabling neurological disease of young adulthood. It is an incurable autoimmune disorder involving oligodendrocyte loss, demyelination, and an inability to remyelinate damaged brain. Remyelination declines with age and MS progression, where oligodendrocyte precursor cells (OPCs) are actively prevented from differentiating into myelinating cells. Current therapies are only directed at reducing demyelination via immune suppression which reduces immune competence. Importantly, no therapies exist to prevent the inevitable decline in remyelination. This project is designed to remove this void. OPC differentiation into myelinating cells is regulated by certain microRNAs (miRNAs) that are reduced in MS lesions. Notably, blood from young rats enhances remyelination of aged brain. The rationale for this work comes from pilot data showing that blood-derived exosomes, small vesicles released from cells, contain miRNAs that trigger remyelination. Non-immunogenic exosomal miRNAs from the serum of young and environmentally enriched (EE) rats enhanced remyelination. The long-term goal of our research is to develop neurotherapeutics based on understanding how EE protects brain. The overall goal of this application is to develop exosomes containing miRNAs as a therapeutic for brain remyelination. The central hypothesis is that these exosomes will enhance remyelination of brain and can be crafted into a therapy for MS. The project has four Aims:
AIM 1 : Establish interferon-gamma (IFN-γ) -stimulated dendritic cells (DCs) as an effective source of exosomes that mimic EE-exosomes to enhance remyelination without injury or immune reaction in slice cultures.
AIM 2 : Establish an efficient means of loading DC exosomes with fabricated targeted miRNA species and establish their ability to enhance remyelination without injury or immune reaction in slice cultures compared to EE-exosomes and IFN-γ-stimulated DC exosomes.
AIM 3 : Establish the optimal efficacy of intravenously (then nasally) delivered (Aims 1-2) exosomes to promote remyelination without injury or immune reaction in a rat lysolecithin model of MS demyelination.
AIM 4 : Establish the optimal efficacy of intravenously (then nasally) administered (Aims 1-2) exosomes to promote remyelination in a mouse model of MS [experimental autoimmune encephalomyelitis (EAE)] without injury or enhanced immune reaction. Outcome measures will be: 1) OPC, differentiated oligodendrocyte, and compact myelin levels, targeted miRNAs & target levels; 2) toxicity, measured by cell death, liver and renal function assays, plus oncogenesis; 3) immune activation assayed by serum and brain markers; and 4) clinical measures of disease severity. The work is innovative because it uses naturally occurring signaling molecules and vehicles for delivery of EE-like enhancement of myelination. The proposed research is significant because it will establish the preclinical feasibility and utility of EE-based miRNA-containing exosomes as a novel therapeutic to remyelinate MS- damaged brain without immune compromise.

Public Health Relevance

A progressive inability of oligodendrocyte precursor cells to remyelinate brain damaged by multiple sclerosis is an inevitable consequence of this devastating common neurological disorder that lacks adequate treatment. Importantly, naturally occurring microRNAs that are enriched in blood in response to environmental enrichment (i.e., increased intellectual, physical, and social activity) can be utilized to promote remyelination of damaged brain. This project is directed toward this end.

Agency
National Institute of Health (NIH)
Institute
National Center for Advancing Translational Sciences (NCATS)
Type
Exploratory/Developmental Cooperative Agreement Phase II (UH3)
Project #
3UH3TR000918-03S1
Application #
9060634
Study Section
Special Emphasis Panel (ZRG1 (50))
Program Officer
Tagle, Danilo A
Project Start
2013-08-01
Project End
2018-07-31
Budget Start
2015-08-28
Budget End
2016-07-31
Support Year
3
Fiscal Year
2015
Total Cost
$79,000
Indirect Cost
$29,000
Name
University of Chicago
Department
Neurology
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Grinberg, Yelena Y; Zitzow, Lois A; Kraig, Richard P (2017) Intranasally administered IGF-1 inhibits spreading depression in vivo. Brain Res 1677:47-57
Ochocinska, Margaret J; Zlokovic, Berislav V; Searson, Peter C et al. (2017) NIH workshop report on the trans-agency blood-brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids Barriers CNS 14:12
Pusic, Kae M; Pusic, Aya D; Kraig, Richard P (2016) Environmental Enrichment Stimulates Immune Cell Secretion of Exosomes that Promote CNS Myelination and May Regulate Inflammation. Cell Mol Neurobiol 36:313-325
Pusic, Aya D; Kraig, Richard P (2015) Phasic Treatment with Interferon Gamma Stimulates Release of Exosomes that Protect Against Spreading Depression. J Interferon Cytokine Res 35:795-807
Quesenberry, Peter J; Aliotta, Jason; Camussi, Giovanni et al. (2015) Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium. J Extracell Vesicles 4:27575
Pusic, Aya D; Pusic, Kae M; Clayton, Benjamin L L et al. (2014) IFN?-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J Neuroimmunol 266:12-23