The female reproductive tract is responsible for producing endocrine hormones, developing mature, healthy gametes (oocytes) and providing the site for fertilization and an environment that supports fetal development. There are five main organs in the female reproductive tract-the ovary, fallopian tubes, uterus, cervix and vagina. Each organ is responsible for unique aspects of reproductive function, but act integrally to support overall endocrine health, fertility, and fetal development. The reproductive tract organs are assembled from multiple cell lineages to create individual follicles (that enclose and support oocytes), oviductal/fallopian tubes, uterine myometrium and endometrium, the cervix and the vagina. Traditionally, research of the female reproductive tract has relied on two-dimensional (2D) cultures of isolated primary cells or immortalized cell lines grown on plastic and independent of adjacent cells, tissue architecture, and functional context. Moving to a three-dimensional (3D) culture environment has allowed us to better understand the function and interaction of cells within individual organs and interrogate interactions between tract tissues in co-cultures (e.g., the follicle and the ovarian surface cells, or the uterine myometrium and endometrium) to measure responses to normal reproductive hormones, pathologic conditions (such as high levels of androgens) or exposure to endocrine disruptors. New biomaterials and 3D culture systems have now presented us with the exciting opportunity to create a complete in vitro reproductive tract whereby each of the cultured organs can be assembled into a linked perfusion culture system. Just as the biological function and responses of 2D monolayer cell cultures differ from those of 3D-cultured organoids, we predict that the biology of the reproductive organs when studied in an integrated series will more closely recapitulate the in vivo environment.
In Aims 1 and 2, we propose to develop in vitro cultures of human reproductive tissues that phenocopy in vivo function in terms of hormone production and response to the physiologically relevant reproductive hormones follicle-stimulating hormone (FSH) and estrogen. We will use the 3DKUBE"""""""" culture platform (KIYATEC), which not only permits control of perfusion to mimic tissue circulation, automated sampling for pharmacokinetic analyses, tissue imaging and in situ bioassays, but also will facilitate integration of the individal organ cultures into a functional in vitro female reproductive tract culture system in Aim 3. The successful development of an ex vivo female reproductive tract will give us the unique ability to interrogate normal hormonal responses of each organ in the context of the complete reproductive tract, as well as examine responses of the organs and system to agents that pose reproductive hazards. Toxicologic testing on female reproductive function and fertility is currently limited to animal studies. Our proposed Ex Vivo Female Reproductive Tract Integration In a 3D Microphysiologic System would permit earlier assessment of the effects of drugs, toxicants or vaccines on the human female reproductive system prior to exposure in clinical trials.

Public Health Relevance

The female reproductive tract is an integrated set of organs that supports women's overall endocrine health, fertility and fetal development. Each organ within the tract is composed of different cells that interact with each other, which relies on a precise tissue architecture that can be more effectively studied in three-dimensional (3D) tissue cultures. Our goal is to develop and validate 3D culture systems of the five major organs of the reproductive tract into an Ex Vivo Female Reproductive Tract Integration In a 3D Microphysiologic System that can be used to measure responses to normal hormones, endocrine disruptors, and other reproductive hazards and in the drug development pipeline.

National Institute of Health (NIH)
National Center for Advancing Translational Sciences (NCATS)
Exploratory/Developmental Cooperative Agreement Phase II (UH3)
Project #
Application #
Study Section
Special Emphasis Panel ()
Program Officer
Tagle, Danilo A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Obstetrics & Gynecology
Schools of Medicine
United States
Zip Code
Wang, Yingzheng; Liu, Mingjun; Zhang, Jiyang et al. (2018) Multidrug Resistance Protein 1 Deficiency Promotes Doxorubicin-Induced Ovarian Toxicity in Female Mice. Toxicol Sci 163:279-292
Stranford, Devin M; Hung, Michelle E; Gargus, Emma S et al. (2017) A Systematic Evaluation of Factors Affecting Extracellular Vesicle Uptake by Breast Cancer Cells. Tissue Eng Part A 23:1274-1282
Xiao, Shuo; Zhang, Jiyang; Liu, Mingjun et al. (2017) Doxorubicin Has Dose-Dependent Toxicity on Mouse Ovarian Follicle Development, Hormone Secretion, and Oocyte Maturation. Toxicol Sci 157:320-329
Young, Alexandria N; Moyle-Heyrman, Georgette; Kim, J Julie et al. (2017) Microphysiologic systems in female reproductive biology. Exp Biol Med (Maywood) 242:1690-1700
Laronda, Monica M; McKinnon, Kelly E; Ting, Alison Y et al. (2017) Good manufacturing practice requirements for the production of tissue vitrification and warming and recovery kits for clinical research. J Assist Reprod Genet 34:291-300
Xiao, Shuo; Coppeta, Jonathan R; Rogers, Hunter B et al. (2017) A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun 8:14584
Laronda, Monica M; Rutz, Alexandra L; Xiao, Shuo et al. (2017) A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 8:15261
Zhu, Jie; Xu, Yuanming; Rashedi, Alexandra S et al. (2016) Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk in the reproductive cycle. Mol Hum Reprod 22:756-767
Moyle-Heyrman, Georgette; Schipma, Matthew J; Dean, Matthew et al. (2016) Genome-wide transcriptional regulation of estrogen receptor targets in fallopian tube cells and the role of selective estrogen receptor modulators. J Ovarian Res 9:5
Karthikeyan, Subbulakshmi; Lantvit, Daniel D; Chae, Dam Hee et al. (2016) Cadherin-6 type 2, K-cadherin (CDH6) is regulated by mutant p53 in the fallopian tube but is not expressed in the ovarian surface. Oncotarget 7:69871-69882

Showing the most recent 10 out of 16 publications