The electrophysiological arm of the Section of Brain Imaging and Electrophysiology continues to make significant methodological advances in stimulus generation, control, and presentation within multiple sense modalities. Any sensory event, which can be digitally stored (including sounds, visual images, tactile patterns, etc.), can now be presented in complete synchrony with the continuous EEG acquisition. We have also written C code for dynamically updating the identity of a specified stimulus in a predefined sequence. This dynamic updating allows each pre-specified stimulus sequence to be uniquely altered based upon the response history of each individual subject. All subject responses can be logged at any point within the sequence of stimulus presentation; not just at predefined response intervals. This enables us to look at complex patterns of responding that may be useful in characterizing groups of individuals with different response profiles in tasks of varying cognitive demand. Additionally, this code has been modified for use in fMRI protocols so that we can run identical versions of tasks in the electrophysiology and fMRI/PET settings. We are actively pursuing analytic strategies to co-register the electrode array data with that of structural MRI and functional blood flow data within a common coordinate system. By recording from spatially dense arrays of electrodes on the surface of the head, the fine temporal information obtained from EEG/ERP techniques can be combined with the fine spatial information of imaging modalities such as PET and fMRI to construct true spatio-temporal models of neural networks underlying cognitive phenomena. It is necessary to augment the electrophysiological data that we have collected using multisensory selective attention tasks with imaging data in order to more precisely visualize and characterize the multisensory processing areas mentioned above. The use of imaging modalities will allow us to verify the activation of these multisensory areas of the brain and the use of EEG/ERP techniques enables us to determine when these areas become activated and produce a model of the spatio-temporal dynamics of the neural network which underlies selective processing of stimuli across sensory modalities. Once a model of normal multisensory selective processing has been validated we can look at different patterns of disruptions in individuals who exhibit impulse control problems to aid in identifying the source of these disruptions. - behavioral research, neurosciences, electrophysiology/EEG - Human Subjects

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Intramural Research (Z01)
Project #
1Z01AA000063-08
Application #
6288635
Study Section
Special Emphasis Panel (LCS)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
1999
Total Cost
Indirect Cost
Name
National Institute on Alcohol Abuse and Alcoholism
Department
Type
DUNS #
City
State
Country
United States
Zip Code