Design and Development of Drugs and Pharmacologic Probes: The goal of the Drug Design & Development Section is to develop novel agents against pivotal steps involved in the pathophysiology of diseases associated with aging, with particular interest in neurological diseases, exemplified by Alzheimer's disease (AD) and stroke, as well as in systemic diseases, such as diabetes.? ? 1. Alzheimer's Disease: Three series of agents are being developed to treat AD. Selective inhibitors of acetylcholinesterase (AChE), of butyrylcholinesterase (BChE), and of amyloid-beta peptide (Abeta) production.? ? 1.1. Cholinesterase inhibitors: Compounds were developed to optimally augment the cholinergic system in the elderly and raise levels of the neurotransmitter, acetylcholine (ACh). Extensive studies involving chemistry, X-ray crystallography, biochemistry and pharmacology resulted in the design and synthesis of novel compounds to differentially inhibit either AChE or BChE in either the brain or periphery for an optimal duration for the potential treatment of a variety of diseases, such as AD, Myasthenia Gravis, and as chemical warfare prophylactics (collaborators: Drs. Brossi, Lahiri, Kulkarni, Sambamurti).? ? 1.1A. AChE: Two of our numerous novel synthesized AChE inhibitors are in development for the treatment of AD; specifically, the pure non-competitive inhibitors, phenserine and tolserine. Both are phenylcarbamates of physostigmine that are 70- and 190-fold selective for AChE vs. BChE. They have a favorable toxicologic profile and robustly enhance cognition in animal models (collaborator Dr. Ingram). They possess a long duration of reversible enzyme inhibition, coupled with a short pharmacokinetic half-life. This reduces dosing frequency, decreases body drug exposure and minimizes the dependence of drug action on the individual variations of drug metabolism commonly found in the elderly. In collaboration with Axonyx Inc. (New York, NY), phenserine is in clinical trials where actions on cognition and levels of CSF and plasma Abeta are being assessed in mild to moderate AD (collaborators: Drs. Bruinsma, Sambamurti, Lahiri).? ? 1.1B. BChE: In normal brain, some 80% of cholinesterase activity is in the form of AChE and 20% is BChE. AChE activity is concentrated mainly in neurons, while BChE is primarily associated with glial cells. Kinetic evidence indicates a role for BChE, in hydrolysing excess ACh. In advanced AD, however, AChE activity decreases to 15% of normal levels in affected brain regions, whereas BChE activity increases. The normal ratio of BChE to AChE becomes mismatched in AD causing excess metabolism of already depleted levels of ACh. The first available reversible and highly potent BChE inhibitors have been synthesized and are in preclinical assessment to evaluate their potential as AD drug candidates. On going studies are focusing on cognition and the molecular mechanisms underpinning AD with a focus to advance a BChE inhibitor to clinic assessment. The selective BChE inhibitor, (-)-bisnorcymserine, has been chosen and is advancing through required preclinical studies.? ? 1.2. Molecular events associated with AD: The reduction in levels of the potentially toxic amyloid-beta peptide (Abeta) has emerged as an important therapeutic goal in AD. Key targets for this goal are factors that affect the expression and processing of the Abeta precursor protein (APP). Our studies show that phenserine, reduces APP and Abeta levels in vivo and in tissue culture without toxicity. This activity is independent of its cholinesterase action, but is post-transcriptional: lowering APP protein levels without affecting mRNA levels. This is mediated in part via the 5'-untranslated region (UTR) of APP mRNA. Current studies are characterizing mechanisms involved and focusing on these in the design and synthesis of agents that lower APP levels as a way of lower Abeta peptide (collaborators: Drs. Lahiri, Sambamurti, Rogers, Giordano, Utsuki). The compound, posiphen, has advanced to clinical trials and backup compounds are being assessed to undertsand molecular mechanisms underpinning activity.? ? 2. Stroke, Parkinson's disease (PD), brain trauma: Drugs currently used provide temporary relief of symptoms, but do not prevent the cell death. Our target for drug design is the transcription factor, p53. Its up-regulation is a common feature of several neurodegenerative disorders, and is a 'gate keeper' to the biochemical cascade that leads to apoptosis (programmed cell death). We recently designed and synthesized a novel series of tetrahydrobenzothiazole and ?oxazole analogues that inhibit p53 activity. Compounds are in current assessment for neuroprotective action in tissue culture and animal models (collaborators: Drs. Mattson, Ovadia, Pick, Hoffer, Wang) to select agents of potential for evaluation as drug candidates. Compounds of this calss have demonstrated biological activity in cellular and/or animal models of stroke, AD and PD, thet are being assessed in other neurodegenerative diseases to define their optimal use.? ? 3. Diabetes: Type 2 diabetes is a prevalent disease in the elderly. Present treatments are unsatisfactory. Our target for drug design is the glucagon-like peptide-1 (GLP-1) receptor (R). GLP-1 is secreted from the gut in response to food and is a potent secretagogue ? it binds to the GLP-1R on pancreatic beta-cells to induce glucose-dependent insulin secretion, thereby controling plasma glucose levels. We are developing long-acting GLP-1 analogues (collaborators: Drs. Egan, Mattson). This research aided in the development of the peptide exendin-4 (Ex-4) into clinical studies in type 2 diabetes. Novel chimeric peptides that combine the best features of GLP-1 and Ex-4 have also been designed and are under preclinical assessment in a variety models. We are characterizing the role of the GLP-1R stimulation in the nervous system, as it is found present in brain and peripheral nerve. GLP-1 analogues possess neurotrophic properties and protect neuronal cells from oxidative and Abeta-induced cell death. Neuroprotection in cell culture translated to in vivo studies in classical rodent neurodegeneration models, which include AD and peripheral neuropathy (collaborator: Dr. Perry). Current studies are focused on selecting agents for clinical assessment.? ? 4. Inflammation: Inflammation is a critical feature of neurodegereation and also occurs in numerous systemic diseases. Our target is the cytokine, TNF-alpha. Novel, potent TNF-alpha inhibitors are being synthesized on the backbone of thalidomide. They reduce TNF-alpha synthesis post-transcriptionally, via its 3'-UTR, in cell culture studies. These are being assessed in classical animals models to aid in the selection of a clinical cadidate for diseases such as Amyotrophic Lateral Sclerosis and PD.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Intramural Research (Z01)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
United States
Zip Code
Wang, Jin-Ya; Huang, Ya-Ni; Chiu, Chong-Chi et al. (2016) Pomalidomide mitigates neuronal loss, neuroinflammation, and behavioral impairments induced by traumatic brain injury in rat. J Neuroinflammation 13:168
Yu, Qian-Sheng; Luo, Weiming; Deschamps, Jeffery et al. (2010) Preparation and Characterization of Tetrabenazine Enantiomers against Vesicular Monoamine Transporter 2. ACS Med Chem Lett 1:105-109
Li, Yazhou; Tweedie, David; Mattson, Mark P et al. (2010) Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 113:1621-31
Olivares, David; Huang, Xudong; Branden, Lars et al. (2009) Physiological and Pathological Role of Alpha-synuclein in Parkinson's Disease Through Iron Mediated Oxidative Stress; The Role of a Putative Iron-responsive Element. Int J Mol Sci 10:1226-60
Wang, Yue; Greig, Nigel H; Yu, Qian-sheng et al. (2009) Presenilin-1 mutation impairs cholinergic modulation of synaptic plasticity and suppresses NMDA currents in hippocampus slices. Neurobiol Aging 30:1061-8
Hu, Junbo; Xia, Xianmin; Cheng, Aiwu et al. (2008) A peptide inhibitor derived from p55PIK phosphatidylinositol 3-kinase regulatory subunit: a novel cancer therapy. Mol Cancer Ther 7:3719-28
Marutle, Amelia; Ohmitsu, Masao; Nilbratt, Mats et al. (2007) Modulation of human neural stem cell differentiation in Alzheimer (APP23) transgenic mice by phenserine. Proc Natl Acad Sci U S A 104:12506-11
Tweedie, David; Milman, Anat; Holloway, Harold W et al. (2007) Apoptotic and behavioral sequelae of mild brain trauma in mice. J Neurosci Res 85:805-15
Hartmann, Joachim; Kiewert, Cornelia; Duysen, Ellen G et al. (2007) Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J Neurochem 100:1421-9
Lahiri, Debomoy K; Chen, DeMao; Maloney, Bryan et al. (2007) The experimental Alzheimer's disease drug posiphen [(+)-phenserine] lowers amyloid-beta peptide levels in cell culture and mice. J Pharmacol Exp Ther 320:386-96

Showing the most recent 10 out of 92 publications