Embryonic stem (ES) cells have the ability to give rise to all cell types, including germ lines (pluripotent), and the ability to undergo an unlimited number of symmetrical divisions without differentiation (self-renewal). For potential therapeutic applications of stem cells, it is paramount to understand how the ES cells maintain their pluripotency and self-renewal, and how the ES cells differentiate into specific cell lineages in vitro. The goal of this research project is to understand the relevant nature of mouse embryonic and tissue stem cells, and to identify genes that are responsible for the maintenance of cellular pluripotency. In our earlier work, we compared the global expression profiles of mouse ES cells and trophoblast stem (TS) cells by DNA microarrays. We studied Esg1, one of the genes identified as a gene expressed specifically in ES cells, and found that the gene encodes an RNA-binding protein that binds to many RNA targets (Tanaka et al., 2006). We have also compared the expression profiles of mouse ES cells undergoing neural differentiation in vitro and those of adult neural stem/progenitor (NS) cells (Aiba et al., 2006). The results suggested that ES cells undergoing neural differentiation in vitro recapitulate the development of neural lineages in vivo. We also found a set of ~4,000 genes, the expression of which increased with neural commitment/differentiation and can be used as a scale for the degree of commitment/differentiation in neural differentiation. We are extending these studies by carrying out global gene expression profiling of mouse embryonic germ (EG) cells and multipotent adult stem cells (MAPCs).

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Intramural Research (Z01)
Project #
1Z01AG000662-06
Application #
7325373
Study Section
(LG)
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2006
Total Cost
Indirect Cost
Name
Aging
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Livigni, Alessandra; Peradziryi, Hanna; Sharov, Alexei A et al. (2013) A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance. Curr Biol 23:2233-2244
Morgani, Sophie M; Canham, Maurice A; Nichols, Jennifer et al. (2013) Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep 3:1945-57
Hammachi, Fella; Morrison, Gillian M; Sharov, Alexei A et al. (2012) Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency. Cell Rep 1:99-109
Canham, Maurice A; Sharov, Alexei A; Ko, Minoru S H et al. (2010) Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol 8:e1000379
Aiba, Kazuhiro; Nedorezov, Timur; Piao, Yulan et al. (2009) Defining developmental potency and cell lineage trajectories by expression profiling of differentiating mouse embryonic stem cells. DNA Res 16:73-80
Sun, Chuanhai; Nakatake, Yuhki; Akagi, Tadayuki et al. (2009) Dax1 binds to Oct3/4 and inhibits its transcriptional activity in embryonic stem cells. Mol Cell Biol 29:4574-83
Masui, Shinji; Ohtsuka, Satoshi; Yagi, Rika et al. (2008) Rex1/Zfp42 is dispensable for pluripotency in mouse ES cells. BMC Dev Biol 8:45
Sharov, Alexei A; Masui, Shinji; Sharova, Lioudmila V et al. (2008) Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. BMC Genomics 9:269
Tsuji, Yukiko; Tsuji, Yukiiko; Yoshimura, Naoko et al. (2008) Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum- and feeder-free defined culture condition. Dev Dyn 237:2129-38
Carter, Mark G; Stagg, Carole A; Falco, Geppino et al. (2008) An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells. Gene Expr Patterns 8:181-98

Showing the most recent 10 out of 31 publications