Epstein Barr virus (EBV) is the cause of infectious mononucleosis and is associated with a number of cancers including lymphomas in transplant recipients. We have been studying EBV DNA in the blood of transplant recipients, chronic active EBV disease, and in patients with other immunocompromising diseases. Multiple sclerosis is a disease of the central nervous system; multiple serologic studies have shown higher levels of antibodies to EBV in the serum before the onset of multiple sclerosis in patients 25 years or older. We collaborated with Jan Lunemann and Roland Martin, formerly of the National Institute of Neurologic Disorders and Stroke, to study patients with multiple sclerosis. Dr. Lunemann?s group found elevated levels of specific lymphocytes (memory CD4 cells) directed against an EBV nuclear protein with increased ability to proliferate in patients with multiple sclerosis compared with healthy EBV-seropositive controls. Also the patients with multiple sclerosis had lymphocytes that responded to a large portion of the EBV nuclear protein, while the healthy carriers responded to a very narrow region of the protein. We measured EBV DNA viral loads and found no significant difference in the level of viral DNA in patients with multiple sclerosis compared with EBV-seropositive controls, indicating that the patients were able to effectively control levels of EBV in the blood.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000913-05
Application #
7303923
Study Section
(MVS)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2006
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Cohen, Jeffrey I; Fauci, Anthony S; Varmus, Harold et al. (2011) Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med 3:107fs7
Sashihara, Junji; Burbelo, Peter D; Savoldo, Barbara et al. (2009) Human antibody titers to Epstein-Barr Virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay. Virology 391:249-56
Hoover, Susan E; Kawada, Junichi; Wilson, Wyndham et al. (2008) Oropharyngeal shedding of Epstein-Barr virus in the absence of circulating B cells. J Infect Dis 198:318-23
Lunemann, Jan D; Frey, Oliver; Eidner, Thorsten et al. (2008) Increased frequency of EBV-specific effector memory CD8+ T cells correlates with higher viral load in rheumatoid arthritis. J Immunol 181:991-1000
Tosato, Giovanna; Cohen, Jeffrey I (2007) Generation of Epstein-Barr Virus (EBV)-immortalized B cell lines. Curr Protoc Immunol Chapter 7:Unit 7.22
Scheinberg, Phillip; Fischer, Steven H; Li, Li et al. (2007) Distinct EBV and CMV reactivation patterns following antibody-based immunosuppressive regimens in patients with severe aplastic anemia. Blood 109:3219-24
Zou, Ping; Kawada, Junichi; Pesnicak, Lesley et al. (2007) Bortezomib induces apoptosis of Epstein-Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. J Virol 81:10029-36
Cohen, J I (2005) HMG CoA reductase inhibitors (statins) to treat Epstein-Barr virus-driven lymphoma. Br J Cancer 92:1593-8
Katano, Harutaka; Cohen, Jeffrey I (2005) Perforin and lymphohistiocytic proliferative disorders. Br J Haematol 128:739-50
Feng, Wen-hai; Cohen, Jeffrey I; Fischer, Steven et al. (2004) Reactivation of latent Epstein-Barr virus by methotrexate: a potential contributor to methotrexate-associated lymphomas. J Natl Cancer Inst 96:1691-702

Showing the most recent 10 out of 13 publications