How do eukaryotic cells sense and move along a concentration gradient of chemical attractants? Chemoattractants such as chemokines are detected by G-protein coupled receptors (GPCR). Using a combination of molecular genetic, biochemical and cell biological approaches, we study chemoattractant elicited signal transduction in both mammalian cells and the model system Dictyostelium discoideum. We employ live cell imaging technology to visualize signaling events in single cells. During the last fiscal year, we established two fluorescence microscope systems: an Olympus IX70 equipped with two filter wheels that is linked to a coo-CCD digital camera and a Zeiss confocal Laser Scanning Microscope LSM 510 META. Using these systems, we are able to monitor the distribution of signaling proteins, tagged with various fluorescence proteins, in single living cells. In the mammalian system we determined the spatial distribution and visualized the signaling cascades of the chemokine receptor CXCR1 at the single cell level. In the D. discoideum system we monitored the temporal and spatial activities of GPCRs in the membranes of chemotaxing cells. Interactions between the subunits of the G proteins were detected as was GPCR-induced dissociation of G proteins in single cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000916-01
Application #
6669979
Study Section
(LIG)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Brzostowski, Joseph A; Fey, Petra; Yan, Jianshe et al. (2009) The Elmo family forms an ancient group of actin-regulating proteins. Commun Integr Biol 2:337-40
Jin, Tian; Xu, Xuehua; Fang, Jun et al. (2009) How human leukocytes track down and destroy pathogens: lessons learned from the model organism Dictyostelium discoideum. Immunol Res 43:118-27
Hereld, Dale; Jin, Tian (2008) Slamming the DOR on chemokine receptor signaling: heterodimerization silences ligand-occupied CXCR4 and delta-opioid receptors. Eur J Immunol 38:334-7
Kramer, Jill M; Hanel, Walter; Shen, Fang et al. (2007) Cutting edge: identification of a pre-ligand assembly domain (PLAD) and ligand binding site in the IL-17 receptor. J Immunol 179:6379-83
Fang, Jun; Brzostowski, Joseph A; Ou, Stephen et al. (2007) A vesicle surface tyrosine kinase regulates phagosome maturation. J Cell Biol 178:411-23
Xu, Xuehua; Muller-Taubenberger, Annette; Adley, Kathryn E et al. (2007) Attenuation of phospholipid signaling provides a novel mechanism for the action of valproic acid. Eukaryot Cell 6:899-906
Xu, Xuehua; Meier-Schellersheim, Martin; Yan, Jianshe et al. (2007) Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing. J Cell Biol 178:141-53
Xu, Xuehua; Brzostowski, Joseph A; Jin, Tian (2006) Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells. Methods Mol Biol 346:281-96
Kramer, Jill M; Yi, Ling; Shen, Fang et al. (2006) Evidence for ligand-independent multimerization of the IL-17 receptor. J Immunol 176:711-5
Sohn, Hae Won; Tolar, Pavel; Jin, Tian et al. (2006) Fluorescence resonance energy transfer in living cells reveals dynamic membrane changes in the initiation of B cell signaling. Proc Natl Acad Sci U S A 103:8143-8

Showing the most recent 10 out of 18 publications