Regulatory cells, by virtue of their capacity to control the vigor of immune responses are essential to the maintenance of host homeostasis. Several types of CD4+ regulatory T cells exist some of which are induced in response to infectious challenge and some of which are judged as natural regulators (natural Treg). Natural Treg play a central role in the control of autoimmunity, a function that is associated with their capacity to recognize self-antigen. Whether or not they also recognize foreign antigens and the extent of their repertoire for such antigens remain unknown. We and others have shown that natural Treg also play a critical role in the outcome of microbial infections. Natural Treg help limit collateral tissue damage caused by vigorous antimicrobial immune responses. These cells can also limit the magnitude of effector responses which result in failure to adequately control infection. Furthermore, there are clear evidence that the efficiency of vaccines can also be hampered by the presence of natural Treg. A broad range of unicellular GI parasites, including Cryptosporidia, Giardia, Microsporidia, and Toxoplasma ssp., infect humans and together represent an important cause of morbidity and mortality worldwide. Our hypothesis is that these pathogens have evolved to manipulate Treg function to insure succesful infection. We are focusing our attention on 2 gastointestinal prozozoan parasites, Crypotosporidia and Microsporidia and are exploring the antigen specificity of natural Treg that accumulate at the site of infection as well as the conditions that favor their retention. We found that in the above mentioned models, natural Treg massively accumulate at sites of infection and modulate the intensity of effector immune responses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000955-01
Application #
7196736
Study Section
(LPD)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2005
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Belkaid, Yasmine; Tarbell, Kristin V (2009) Arming Treg cells at the inflammatory site. Immunity 30:322-3
Belkaid, Yasmine; Tarbell, Kristin (2009) Regulatory T cells in the control of host-microorganism interactions (*). Annu Rev Immunol 27:551-89
Kakinuma, Takashi; Nadiminti, Hari; Lonsdorf, Anke S et al. (2007) Small numbers of residual tumor cells at the site of primary inoculation are critical for anti-tumor immunity following challenge at a secondary location. Cancer Immunol Immunother 56:1119-31
Sun, Cheng-Ming; Hall, Jason A; Blank, Rebecca B et al. (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204:1775-85
Coombes, Janine L; Siddiqui, Karima R R; Arancibia-Carcamo, Carolina V et al. (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204:1757-64
Couper, Kevin N; Blount, Daniel G; de Souza, J Brian et al. (2007) Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 treatment in malaria-infected mice. J Immunol 178:4136-46
Divanovic, Senad; Trompette, Aurelien; Petiniot, Lisa K et al. (2007) Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. J Leukoc Biol 82:265-71
Schleiss, Mark R; Lacayo, Juan C; Belkaid, Yasmine et al. (2007) Preconceptual administration of an alphavirus replicon UL83 (pp65 homolog) vaccine induces humoral and cellular immunity and improves pregnancy outcome in the guinea pig model of congenital cytomegalovirus infection. J Infect Dis 195:789-98
Wu, Wenhui; Weigand, Luise; Belkaid, Yasmine et al. (2006) Immunomodulatory effects associated with a live vaccine against Leishmania major containing CpG oligodeoxynucleotides. Eur J Immunol 36:3238-47
Yurchenko, Ekaterina; Tritt, Michael; Hay, Valerie et al. (2006) CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J Exp Med 203:2451-60

Showing the most recent 10 out of 14 publications