Lung cancer is the most common human neoplasm in the U.S. and, increasingly, in much of the world. While smoking is known to be the major etiological factor, the causative cellular and molecular mechanisms are complex and not well understood. Currently, we are focusing on two aspects of causation and behavior of adenocarcinoma, the most common form of lung cancer: the role of the K-ras gene; and contributions of a signaling pathway triggered by the ErbB3 receptor. The oncogene K-ras is often mutated in adenocarcinoma of the lung (as well as other common carcinomas), but the wild-type form is tumor suppressive. Important questions, then, are: why is mutant K-ras actively oncogenic? How is wild-type K-ras tumor suppressive. Answers to these questions could aid in prevention of up to 50% of human lung adenocarcinomas, and an even higher percentage of cancers of the colon and pancreas. We have found stable transfection of mutant K-ras in lung epithelial cells, with moderate increase in activity, results in upregulation of cyclooxygenase 2, peroxide generation, and DNA damage, which can be blocked with a COX2 inhibitor. Inducible expression of mutant K-ras at high activity leads to generation of both peroxide and superoxides, followed by upregulation of anti-oxidant defenses, especially peroxiredoxins. Abrogation of these defenses by chemicals such as those found in tobacco smoke may lead to cell transformation; this is under test. These results support use of antioxidants for prevention/intervention of lung cancer. Mechanisms of regulation of wild-type K-ras in nontransformed lung epithelial cells are also under study; early results implicate the epidermal growth factor receptor.In the second aspect of this project, the majority of human and mouse lung adenocarcinoma cell lines, but not nontransformed cells, express the ErbB3 receptor, which signals through phosphatidylinositol 3-kinase, Akt, GSK3beta, and cyclin D1 to stimulate the cell cycle and also cell invasiveness and migration. These behaviors can be blocked with siRNA to ErbB3 or the several Akt isoforms. Thiu, siRNA treatment may be an approach to therapy. Tests with xenografts are in progress.

Agency
National Institute of Health (NIH)
Institute
Division of Basic Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC005399-21
Application #
7038520
Study Section
(LCC)
Project Start
Project End
Budget Start
Budget End
Support Year
21
Fiscal Year
2004
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Sithanandam, Gunamani; Fornwald, Laura W; Fields, Janet R et al. (2012) Anti-tumor efficacy of naked siRNAs for ERBB3 or AKT2 against lung adenocarcinoma cell xenografts. Int J Cancer 130:251-8
Sithanandam, G; Anderson, L M (2008) The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 15:413-48
Romanowska, Malgorzata; Kikawa, Keith D; Fields, Janet R et al. (2007) Effects of selenium supplementation on expression of glutathione peroxidase isoforms in cultured human lung adenocarcinoma cell lines. Lung Cancer 55:35-42
Sithanandam, Gunamani; Smith, George T; Fields, Janet R et al. (2005) Alternate paths from epidermal growth factor receptor to Akt in malignant versus nontransformed lung epithelial cells: ErbB3 versus Gab1. Am J Respir Cell Mol Biol 33:490-9
Sithanandam, Gunamani; Fornwald, Laura W; Fields, Janet et al. (2005) Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene 24:1847-59
Anderson, Lucy M (2005) Cancer biology and hormesis: comments on Calabrese (2005). Crit Rev Toxicol 35:583-6
Maciag, Anna; Anderson, Lucy M (2005) Reactive oxygen species and lung tumorigenesis by mutant K-ras: a working hypothesis. Exp Lung Res 31:83-104
Vucenik, Ivana; Ramakrishna, Gayatri; Tantivejkul, Kwanchanit et al. (2005) Inositol hexaphosphate (IP6) blocks proliferation of human breast cancer cells through a PKCdelta-dependent increase in p27Kip1 and decrease in retinoblastoma protein (pRb) phosphorylation. Breast Cancer Res Treat 91:35-45
Dennis, Phillip A; Van Waes, Carter; Gutkind, J Silvio et al. (2005) The biology of tobacco and nicotine: bench to bedside. Cancer Epidemiol Biomarkers Prev 14:764-7
Maciag, Anna; Sithanandam, Gunamani; Anderson, Lucy M (2004) Mutant K-rasV12 increases COX-2, peroxides and DNA damage in lung cells. Carcinogenesis 25:2231-7

Showing the most recent 10 out of 13 publications