Metabolomics of areca alkaloids: The value of metabolomics in the study of xenobiotic metabolism was illustrated in a study on areca alkaloids. The areca alkaloids comprise arecoline, arecaidine, guvacoline, and guvacine. Approximately 600 million users of areca nut products, for example, betel quid chewers, are exposed to these alkaloids, principally arecoline and arecaidine. Metabolism of arecoline (20 mg/kg p.o. and i.p.) and arecaidine (20 mg/kg p.o. and i.p.) was investigated in the mouse using a metabolomic approach employing ultra-performance liquid chromatography-time-of-flight mass spectrometric analysis of urines. Eleven metabolites of arecoline were identified, including arecaidine, arecoline N-oxide, arecaidine N-oxide, N-methylnipecotic acid, N-methylnipecotylglycine, arecaidinylglycine, arecaidinylglycerol, arecaidine mercapturic acid, arecoline mercapturic acid, and arecoline N-oxide mercapturic acid, together with nine unidentified metabolites. The major metabolite of both arecoline and arecaidine, N-methylnipecotic acid, is a novel metabolite arising from carbon-carbon double-bond reduction. Another unusual metabolite found was the monoacylglyceride of arecaidine. What role, if any, that is played by these uncommon metabolites in the toxicology of arecoline and arecaidine is not known. However, the enhanced understanding of the metabolic transformation of arecoline and arecaidine should contribute to further research into the clinical toxicology of the areca alkaloids. Metabolomics and P450-humanized mice: Metabolomics was also used to study a candidate chemotherapeutic agent aminoflavone (AF) that possesses a unique antiproliferative profile against tumor cells. Metabolic bioactivation of AF by drug-metabolizing enzymes, especially CYP1A monooxygenases, has been implicated as an underlying mechanism for its selective cytotoxicity in several cell culture-based studies. However, in vivo metabolism of AF has not been investigated in detail. In this study, the structural identities of 13 AF metabolites (12 of which are novel) in mouse urine or from microsomal incubations, including three monohydroxy-AFs, two dihydroxy-AFs and their sulfate and glucuronide conjugates, as well as one N-glucuronide, were determined by accurate mass measurements and liquid chromatography-tandem mass spectrometry fragmentation patterns, and a comprehensive map of the AF metabolic pathways was constructed. Significant differences between wild-type and Cyp1a2-null mice, within the relative composition of urinary metabolites of AF, demonstrated that CYP1A2-mediated regioselective oxidation was a major contributor to the metabolism of AF. Comparisons between wild-type and CYP1A2-humanized mice further revealed interspecies differences in CYP1A2-mediated catalytic activity. Incubation of AF with liver microsomes from all three mouse lines and with pooled human liver microsomes confirmed the observations from urinary metabolite profiling. In vivo evaluation of the colon carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) using metabolomics: PhIP is a potent rodent carcinogen and a potential human carcinogen because of its existence in the normal human diet. N2-OH-PhIP, a major PhIP metabolite, has been identified as a precursor of genotoxic species. In vitro data supported the view that CYP1A2 is the major enzyme responsible for the formation of N2-OH-PhIP. The metabolism of PhIP in wild-type, Cyp1a2-null, and CYP1A2-humanized mice was examined in detail using a metabolomic approach. Following data acquisition in a high-resolution LC-MS system, urinary metabolomes of the control and PhIP-treated mice were characterized in a principal component analysis (PCA) model. Comprehensive metabolite profiles of PhIP were established through analyzing urinary ions contributing to the separation of three mouse lines in the multivariate model and by measuring radiolabled PhIP metabolite in a radio-HPLC assay, respectively. The genotoxicity of PhIP to three mouse lines was evaluated by measuring DNA adduction levels in liver, lung, colon, and mammary gland. On the basis of the chemical identities of 17 urinary PhIP metabolites, including eight novel metabolites, multivariate data analysis revealed the role of CYP1A2 in PhIP metabolism and a human-mouse interspecies difference in the catalytic activity of CYP1A2. In addition, the results also showed that Cyp1a2-null mice still possess significant N2-hydroxylation and DNA adduction activities, which may be partially attributed to mouse CYP2C enzymes. Regulation of CYP3A4: The impact of age and sex on the expression of CYP3A4 was recently determined in a transgenic mouse line carrying the human CYP3A4 gene. To further investigate the physiological regulation of human CYP3A genes, a novel transgenic mouse line was generated using a BAC clone containing both CYP3A4 and CYP3A7 genes. CYP3A7 expression was observed in transgenic mouse fetal livers, whereas CYP3A4 exhibited developmental expression characterized by sexual dimorphism in postpubertal livers. Hepatic CYP3A4 protein and RNA were expressed in immature transgenic male mice and became undetectable after 6 weeks of age, whereas CYP3A4 was expressed in both immature and adult females. CYP3A4 was markedly elevated by the xenobiotic receptor activator phenobarbital in both male and female livers, demonstrating drug induction of the CYP3A4 transgene in this mouse model. Furthermore, continuous infusion of recombinant growth hormone (GH) in transgenic male mice, overriding the pulsatile male plasma GH profile, increased hepatic CYP3A4 mRNA and protein to normal female levels. Continuous GH treatment also feminized the expression of endogenous murine Cyp2b and Cyp3a44 genes. Thus, human CYP3A4 contains all of the gene regulatory sequences required for it to respond to endogenous hormonal regulators of developmental expression and sexual dimorphism, in particular GH. These findings may help elucidate the role of GH in determining the sex-dependent expression of CYP3A4 in human liver and suggest that GH therapy may alter the pharmacokinetic and pharmacodynamic properties of CYP3A4 substrates The pregnane X receptor (PXR)-humanized mice: The most common clinical implication for the activation of the human PXR is the occurrence of drug-drug interactions mediated by up-regulated CYP3A isozymes. Typical rodent models do not predict drug-drug interactions mediated by human PXR because of species differences in response to PXR ligands. In the current study, a PXR-humanized mouse model was generated by bacterial artificial chromosome (BAC) transgenesis in Pxr-null mice using a BAC clone containing the complete human PXR gene and 5'- and 3'-flanking sequences. In this PXR-humanized mouse model, PXR is selectively expressed in the liver and intestine, the same tissue expression pattern as CYP3A. Treatment of PXR-humanized mice with the PXR ligands mimicked the human response, since both hepatic and intestinal CYP3As were strongly induced by rifampicin, a human-specific PXR ligand, but not by pregnenolone 16alpha-carbonitrile, a rodent-specific PXR ligand. In rifampicin-pretreated PXR-humanized mice, an approximately 60% decrease was observed for both the maximal midazolam serum concentration (C(max)) and the area under the concentration-time curve, as a result of a 3-fold increase in mida [summary truncated at 7800 characters]
Showing the most recent 10 out of 83 publications