Human immunodeficiency virus type 1 (HIV-1) encodes the transactivating protein Tat, which is essential for virus replication and progression of HIV disease. Tat has multiple domains and consequently the molecular mechanisms by which Tat regulates viral and cellular gene expression are complex. We have recently demonstrated that cellular activation by Tat involves a short core domain, Tat21-40, which contains seven cysteine residues highly conserved in most HIV-1 subtypes. Effective induction by Tat21-40 of both NF-kB-mediated HIV replication and TAR- dependent transactivation of the HIV-1 LTR indicates that this short sequence is sufficient to promote HIV infection. Moreover, Tat21-40 possesses potent angiogenic activity, further underscoring its role in HIV pathogenesis. These data provide the first demonstration that a 20- residue core domain sequence of Tat is sufficient to transactivate, induce HIV replication, and trigger angiogenesis. This short peptide sequence provides a potential novel therapeutic target for disrupting the functions of Tat and inhibiting progression of HIV disease. We have further demonstrated that Tat-dependent transcription takes place in a cell cycle-dependent manner and that Tat is capable of promoting gene expression in two distinct stages of the cell cycle. Tat-dependent LTR activation is observed in late G1/early S phase. This activation is TAR-dependent and requires a functional Sp1 binding site. A second phase of transactivation by Tat is observed in late G2, which is TAR- independent. This later phase of transcription is enhanced by a natural cell cycle blocker of HIV-1, vpr, which arrests infected cells at the G2/M boundary. Using a series of deletion constructs, we find that Tat- dependent G1/S activation is Sp1-dependent, whereas G2 activation is not. Our studies suggest that retroviral activators may perform distinct functions of activation during different stages of cell cycle. - AIDS, Cytokines, Gene regulation, protein structure, Retroviruses, Trans-acting Factors, Transcription, Virus-Cell Interactions,

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC005753-07
Application #
6289158
Study Section
Special Emphasis Panel (LRBG)
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
1999
Total Cost
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Bonome, Tomas; Levine, Douglas A; Shih, Joanna et al. (2008) A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res 68:5478-86
Gegonne, Anne; Weissman, Jocelyn D; Lu, Hanxin et al. (2008) TFIID component TAF7 functionally interacts with both TFIIH and P-TEFb. Proc Natl Acad Sci U S A 105:5367-72
Cho, Won-Kyung; Zhou, Meisheng; Jang, Moon Kyoo et al. (2007) Modulation of the Brd4/P-TEFb interaction by the human T-lymphotropic virus type 1 tax protein. J Virol 81:11179-86
Zhou, Meisheng; Lu, Hanxin; Park, Hyeon et al. (2006) Tax interacts with P-TEFb in a novel manner to stimulate human T-lymphotropic virus type 1 transcription. J Virol 80:4781-91
Gegonne, Anne; Weissman, Jocelyn D; Zhou, Meisheng et al. (2006) TAF7: a possible transcription initiation check-point regulator. Proc Natl Acad Sci U S A 103:602-7
Jang, Moon Kyoo; Mochizuki, Kazuki; Zhou, Meisheng et al. (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19:523-34
Ammosova, Tatyana; Washington, Kareem; Debebe, Zufan et al. (2005) Dephosphorylation of CDK9 by protein phosphatase 2A and protein phosphatase-1 in Tat-activated HIV-1 transcription. Retrovirology 2:47
Watanabe, Takahiro; Sugaya, Makoto; Atkins, April M et al. (2003) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen prolongs the life span of primary human umbilical vein endothelial cells. J Virol 77:6188-96
Zhou, Meisheng; Deng, Longwen; Kashanchi, Fatah et al. (2003) The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA. Proc Natl Acad Sci U S A 100:12666-71
Zhou, M; Kashanchi, F; Jiang, H et al. (2000) Phosphorylation of the RAP74 subunit of TFIIF correlates with Tat-activated transcription of the HIV-1 long terminal repeat. Virology 268:452-60

Showing the most recent 10 out of 14 publications