To investigate the molecular mechanisms mediating hematopoietic cell differentiation and mitogenesis by activation of the platelet-derived growth factor beta receptor (PDGF-betaR), the wild type PDGF-betaR (PDGF-betaRWT) and tyrosine phenylalanine mutants of the PDGF-betaR, including F751, F966, F970, F1009, F1021 and F1009/F1021 were overexpressed in FDC-P2 myeloid progenitor cells by retroviral-mediated gene transfer. Stimulation of PDGF-betaRWT and F966, F970 and F1009 infectants with PDGF-BB led to the increased expression of monocytic differentiation markers. In contrast, activation of PDGF-betaR in the parental line or the F1021 or F1009/F1021 mutant infectants failed to induce monocytic differentiation. PDGF-BB stimulation of PDGF-betaRWT, F751, F966, F970 and F1009 infectants led to pronounced DNA synthesis, whereas F1021 and F1009/F1021 infectants did not reveal any increase in mitogenesis when compared to that of the FDC-P2 line. While PDGF stimulation of FDC-P2 cells overexpressing PDGF-betaRWT led to a pronounced increase in inositol phosphate formation due to phospholipase C-gamma (PLC-gamma) activation, PDGF-BB induced phosphoinositol hydrolysis was completely abolished in the F1021 and F1009/F1021 infectants. GF 109203X, a specific inhibitor of protein kinase C (PKC) activation, fully blocked PDGF-betaR-mediated monocytic differentiation and mitogenesis. Taken together, these results suggest that stimulation of the PDGF-betaR signaling pathway can mediate monocytic differentiation when PDGF-betaR is expressed at sufficient levels and that activation of PLC-gamma and PKC plays a pivotal role in PDGF-betaR- mediated differentiation and mitogenesis in FDC-P2 cell system.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC005769-05
Application #
6100871
Study Section
Special Emphasis Panel (LCMB)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
1998
Total Cost
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code