Pharmacological agents are being developed to modulate phosphotyrosyl (pTyr) dependent cell signalling. Emphasis is on inhibitors of pTyr-dependent binding interactions which are mediated by src homology 2 (SH2) domains and on protein- tyrosine phosphatase (PTP) inhibitors. Central to both of these efforts is the development of new pTyr mimetics which afford either increased stability toward enzymatic degradation by PTPs or increased affinity. In the SH2 domain area, development of cell-permeable growth factor receptor-bound 2 (Grb2) antagonists is being undertaken as potential new therapeutics for a variety of cancers including erbB-2 and Met dependent cancers. A series of new pTyr-mimicking amino acid analogues, including non phosphate-containing analogues, have been prepared and incorporated into a tripeptide platform. Among these are, non phosphate containing analogues which exhibit low nanomolar Grb2 SH2 domain inhibition constants. Promising analogues exhibit potent inhibition of Grb2 binding in whole cell systems, and display good cytostatic effects against breast cancer cells grown in culture or in soft agar. Studies are currently underway to examine the utility of these agents in combination therapies directed against breast cancer. Preliminary cell studies indicate that non toxic concentrations of these synthetic Grb2 inhibitors can act cooperatively with certain standard cytotoxic chemotherapeutic agents, to significantly reduce the growth inhibitory dose. In cellular studies, these synthetic Grb2 inhibitors inhibit human growth factor (HGF)-induced cell migration in Met-containing fibroblasts at nanomolar concentrations and inhibit tubule formation potentially involved in angiogenesis. Work is currently in progress to examine these agents in whole animal metastasis models. Synthetic structural studies have produced novel conformationally constrained variants of lead Grb2 SH2 domain inhibitors. Initial data indicate that macrocyclization of tripeptide inhibitors can result in significant potency enhancement. Macrocycles from this series have exhibited the highest potency of any compounds yet tested in our erbB-2 dependent breast cancer systems. Work continues on the design, synthesis and biological evaluation of new macrocyclic Grb2 SH2 domain inhibitors. In the phosphatase area, a structure-based approach toward inhibitor design is being pursued. Using an epidermal growth factor receptor (EGFr)-derived pTyr-containing peptide sequence as a platform, we have examined a large number of novel non phosphorus containing pTyr mimetics for inhibitory potency against PTP1B. Highly potent motifs identified in this fashion have served as models for small molecule peptidomimetic design. In collaboration with scientists at Oxford University, we have obtained X-ray crystal structures of several of our peptidomimetic inhibitors bound to the PTP1B enzyme. Utilizing key binding elements evident in one of these crystal structures, and we have used focussed library methodology to enhance potency approximately 100-fold relative to the lead inhibitor. In separate work, information derived from the X-ray crystal structure of a lead inhibitor bound to PTP1B has been used to derive 2,6-naphthalene dicarboxylic acid as a new PTP-binding motif.
The aim of this work is to identify high affinity small molecule inhibitors with improved bioavailability as tools for studying cellular signal transduction, and as potential therapeutic agents.

Agency
National Institute of Health (NIH)
Institute
Division of Basic Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC006198-12
Application #
6558986
Study Section
(LMC)
Project Start
Project End
Budget Start
Budget End
Support Year
12
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Liu, Fa; Park, Jung-Eun; Qian, Wen-Jian et al. (2011) Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel. Nat Chem Biol 7:595-601
Cao, Xuefei; Plasencia, Carmen; Kanzaki, Atsuko et al. (2009) Elucidation of the molecular mechanisms of a salicylhydrazide class of compounds by proteomic analysis. Curr Cancer Drug Targets 9:189-201
Liu, Fa; Park, Jung-Eun; Lee, Kyung S et al. (2009) Preparation of orthogonally protected (2S, 3R)-2-amino-3-methyl-4-phosphonobutyric acid (Pmab) as a phosphatase-stable phosphothreonine mimetic and its use in the synthesis of Polo-box domain-binding peptides. Tetrahedron 65:9673-9679
Jiang, Sheng; Liao, Chenzhong; Bindu, Lakshman et al. (2009) Discovery of thioether-bridged cyclic pentapeptides binding to Grb2-SH2 domain with high affinity. Bioorg Med Chem Lett 19:2693-8
Liu, Fa; Worthy, Karen M; Bindu, Lakshman K et al. (2007) Structural examination of ring-closing metathesis-derived 15-member macrocycles as Grb2 SH2 domain-binding tetrapeptide mimetics. J Org Chem 72:9635-42
Giubellino, Alessio; Gao, Yang; Lee, Sunmin et al. (2007) Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist. Cancer Res 67:6012-6
Kang, Sang-Uk; Choi, Won Jun; Oishi, Shinya et al. (2007) Examination of acylated 4-aminopiperidine-4-carboxylic acid residues in the phosphotyrosyl+1 position of Grb2 SH2 domain-binding tripeptides. J Med Chem 50:1978-82
Choi, Won Jun; Shi, Zhen-Dan; Worthy, Karen M et al. (2006) Application of azide-alkyne cycloaddition 'click chemistry' for the synthesis of Grb2 SH2 domain-binding macrocycles. Bioorg Med Chem Lett 16:5265-9
Dharmawardana, Pathirage G; Peruzzi, Benedetta; Giubellino, Alessio et al. (2006) Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs 17:13-20
Kang, Sang-Uk; Shi, Zhen-Dan; Worthy, Karen M et al. (2005) Examination of phosphoryl-mimicking functionalities within a macrocyclic Grb2 SH2 domain-binding platform. J Med Chem 48:3945-8

Showing the most recent 10 out of 37 publications