Inhibitors of HIV integrase are being developed as potential anti-AIDS drugs in collaboration with the Laboratory of Molecular Pharmacology, DBS, NCI. Lead inhibitor structures have initially been derived from several sources, including three-dimensional pharmacophore searching of the more than 250,000 compounds contained within the NCIs chemical repository. Promising compounds have been systematically explored through chemical synthesis of analogues to determine structure-activity relationships (SAR) responsible for integrase inhibition. Information generated in this fashion has been applied to the design and preparation of new analogues having higher potency, reduced collateral cytotoxicity and greater antiviral protective effects in HIV infected cells. One lead structure in these studies has been provided by chicoric acid, which is a natural product previously reported to exhibit potent HIV integrase inhibition as well as protective effects in HIV-infected cells. Through a large number of synthetic analogues, we established important SAR parameters for this class of integrase inhibitor. In further work, we have prepared a series of sulfur- containing bisaroyl hydrazines which both show potent inhibition of HIV integrase both in extracellular assays, and are capable of exhibiting 100% protection of HIV-infected cells at micromolar concentrations. Collaborative studies are underway to examine HIV integrase inhibition in whole cell systems. In separate studies, collaborative efforts are underway to obtain X-ray structures of inhibitors bound to the HIV integrase enzyme.Information obtained from such X-ray structures should provide a starting point for the computer assisted design of potent new inhibitors. In one approach, synthetic modification of potent inhibitors has been undertaken to render them water soluble and more suitable for co-crystallization with HIV integrase. In an alternate approach, promising inhibitors are being synthetically modified in ways which will allow them to bind irreversibly to the enzyme active site. This has required the development of new synthetic chemistry which allows the introduction of highly reactive functionality in latent, non reactive form, which can be unmasked to the active species in a final step prior to incubation with the enzyme. - AIDS, design, HIV, inhibitor, integrase, synthesis,

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC007363-05
Application #
6289190
Study Section
Special Emphasis Panel (LMC)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
1999
Total Cost
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Liu, Fa; Stephen, Andrew G; Fisher, Robert J et al. (2008) Protected aminooxyprolines for expedited library synthesis: application to Tsg101-directed proline-oxime containing peptides. Bioorg Med Chem Lett 18:1096-101
Johnson, Allison A; Marchand, Christophe; Patil, Sachindra S et al. (2007) Probing HIV-1 integrase inhibitor binding sites with position-specific integrase-DNA cross-linking assays. Mol Pharmacol 71:893-901
Li, Min; Mizuuchi, Michiyo; Burke Jr, Terrence R et al. (2006) Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J 25:1295-304
Johnson, Allison A; Santos, Webster; Pais, Godwin C G et al. (2006) Integration requires a specific interaction of the donor DNA terminal 5'-cytosine with glutamine 148 of the HIV-1 integrase flexible loop. J Biol Chem 281:461-7
Al-Mawsawi, Laith Q; Fikkert, Valery; Dayam, Raveendra et al. (2006) Discovery of a small-molecule HIV-1 integrase inhibitor-binding site. Proc Natl Acad Sci U S A 103:10080-5
Liu, Fa; Stephen, Andrew G; Adamson, Catherine S et al. (2006) Hydrazone- and hydrazide-containing N-substituted glycines as peptoid surrogates for expedited library synthesis: application to the preparation of Tsg101-directed HIV-1 budding antagonists. Org Lett 8:5165-8
Zhang, Xuechun; Marchand, Christophe; Pommier, Yves et al. (2004) Design and synthesis of photoactivatable aryl diketo acid-containing HIV-1 integrase inhibitors as potential affinity probes. Bioorg Med Chem Lett 14:1205-7
Shkriabai, Nick; Patil, Sachindra S; Hess, Sonja et al. (2004) Identification of an inhibitor-binding site to HIV-1 integrase with affinity acetylation and mass spectrometry. Proc Natl Acad Sci U S A 101:6894-9
Svarovskaia, Evguenia S; Barr, Rebekah; Zhang, Xuechun et al. (2004) Azido-containing diketo acid derivatives inhibit human immunodeficiency virus type 1 integrase in vivo and influence the frequency of deletions at two-long-terminal-repeat-circle junctions. J Virol 78:3210-22
Marchand, Christophe; Johnson, Allison A; Karki, Rajeshri G et al. (2003) Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/C280S). Mol Pharmacol 64:600-9

Showing the most recent 10 out of 13 publications