Papillomaviruses (PVs) infect the epithelia of animals and man where they generally induce benign proliferation at the site of infection. However, there is a strong association between malignant progression of human genital lesions and certain HPV types, most frequently HPV 16. We have generated virus-like particles (VLPs) for HPV 16 and other PVs that consist of the L1 major capsid protein or L1 plus L2, the minor capsid protein. Parenteral injection of purifed VLPs induced high titers of neutralizing antibodies and protection from experimental challenge in animal models. Based upon these results, we have validated GMP grade VLPs and have recently completed a phase 1 clinical trial of an HPV16 VLP vaccine. Vaccinees, even those vaccinated in the absence of adjuvant, produced high titers of HPV16 psuedovirion neutralizing antibodies and reported only minor side effects. A phase 2 trial is currently in progress.We are also developing alternative vaccine candidates. To increase the therapeutic potential of a VLP-based vaccine, we have incorporated non-structural HPV proteins into the VLPs as L2 fusion proteins. Vaccination with an HPV16 E7 chimeric VLP generated a CD8 restricted T cell response that protected mice from tumor challenge using an E7 expressing tumor line and also induced regression of established tumors. To increase mucosal antibody responses, we have tested intranasal instillation of purified VLPs in mice. In contrast to parenteral inoculation of VLPs, this protocol elicited both secretory IgA and transudated IgG in the female genital tract. Neutralizing antibodies were detected throughout the estus cycle in intranasally vaccinated mice, but not in those vaccinated parenterally.To break B-cell tolerance and induce antibody responses to a self-protein, we replaced an immunodominant epitope of a VLP with a self polypeptide. Specifically, we engineered a L1 protein that displayed the first external loop of mouse CCR5 on the surface of particles. Mice vaccinated with these particles induced high titers of antibodies that bound cell surface CCR5 and blocked HIV infection of culutred cells. Macaques vaccinated with similar particles displaying macaque/human CCR5 peptide also produced anti-CCR5 IgG. These findings suggest a general method for inducing auto-antibodies, with many basic and applied reasearch applications. - Cancer Prevention, immune response, Papillomaviruses, vaccine design, Virus-Cell Interactions, AIDS, Antibody, autoantibodies, Cancer vaccines, CCR5, cervical cancer, cervical dysplasia, HIV, HPV, vaccine against human retroviruses, - Human Subjects & Human Tissues, Fluids, Cells, etc.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC009052-10
Application #
6289230
Study Section
Special Emphasis Panel (LCO)
Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
1999
Total Cost
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Einstein, Mark H; Schiller, John T; Viscidi, Raphael P et al. (2009) Clinician's guide to human papillomavirus immunology: knowns and unknowns. Lancet Infect Dis 9:347-56
Johnson, Katherine M; Kines, Rhonda C; Roberts, Jeffrey N et al. (2009) Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 83:2067-74
Lee, Tae-Young; Kim, Yang-Hyun; Yoon, Sun-Woo et al. (2009) Oral administration of poly-gamma-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol Immunother 58:1781-94
Roberts, Jeffrey N; Buck, Christopher B; Thompson, Cynthia D et al. (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13:857-61
Revaz, Veronique; Zurbriggen, Rinaldo; Moser, Christian et al. (2007) Humoral and cellular immune responses to airway immunization of mice with human papillomavirus type 16 virus-like particles and mucosal adjuvants. Antiviral Res 76:75-85
Day, Patricia M; Thompson, Cynthia D; Buck, Christopher B et al. (2007) Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition. J Virol 81:8784-92
Hildesheim, Allan; Herrero, Rolando; Wacholder, Sholom et al. (2007) Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA 298:743-53
Pinto, Ligia A; Viscidi, Raphael; Harro, Clayton D et al. (2006) Cellular immune responses to HPV-18, -31, and -53 in healthy volunteers immunized with recombinant HPV-16 L1 virus-like particles. Virology 353:451-62
Schiller, John T; Nardelli-Haefliger, Denise (2006) Chapter 17: Second generation HPV vaccines to prevent cervical cancer. Vaccine 24 Suppl 3:S147-53
Wright, Thomas C; Bosch, F Xavier; Franco, Eduardo L et al. (2006) Chapter 30: HPV vaccines and screening in the prevention of cervical cancer; conclusions from a 2006 workshop of international experts. Vaccine 24 Suppl 3:S251-61

Showing the most recent 10 out of 37 publications