We have also been investigating anticancer therapy using the death ligand tumor necrosis factor-related apoptosis-inducing ligand(TRAIL) in combination with the proteasome inhibitor bortezomib (Velcade). We have observed that these 2 agents synergize to promote tumor cell apoptosis in a variety of human and murine cancer cell lines. The molecular mechanism whereby this combination promotes apoptosis has been further investigated. Surprisingly this does not seem to involve inhibition of NFkB. Preliminary in vivo studies suggest this combination may have some promise for future therapeutic utililty.Screening of a large number of human tumor cell lines shows that 20-30% are sensitized to TRAIL by bortezomib. The molecular basis for sensitivity and resistance is being investigated further.There does seem to be a good correlation with the amplification of a very proximal apoptotic signal (activation of caspase 8) and sensitization. The molecular basis as to why this occurs in sensitized but not resistant cells is under investigation. A clinical trial of bortezomib and an agonist antibody to one of the TRAIL death receptors was recently initiated by Human Genome Sciences. The laboratory has been focused during the last year on immune-mediated tumor cell destruction. Natural killer (NK) cells and cytotoxic T cells (CTL) lyse virally-infected and tumor cells by 2 main mechanisms:(1) the exocytosis of lytic granules and (2) the expression of cytotoxic molecules like tumor necrosis factor (TNF) or related molecules like Fas-ligand. We have investigated the importance of these mechanisms in cytotoxic immune responses to various mouse and human tumors. We are currently using a tumor model system in an attempt to simplify these types of experiment. This involves expression by the tumor cells of viral hemagglutinin (HA) as a surrogate tumor antigen. CD 8 T cells specific for a particular HA peptide are then to be derived from various gene-targeted mice and adotively transfered to tumor-bearing mice. This should help us determine which effector functions of these T cells are crucial for tumor destruction in vivo. In addition we are treating the tumor-bearing mice with bortezomib prior to T cell transfer in an attempt to pre-sensitize the tumor cells to cytotoxic effector molecules derived from the T cells.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010012-12
Application #
7592618
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
12
Fiscal Year
2007
Total Cost
$937,072
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Sun, Kai; Li, Minghui; Sayers, Thomas J et al. (2008) Differential effects of donor T-cell cytokines on outcome with continuous bortezomib administration after allogeneic bone marrow transplantation. Blood 112:1522-9
Cretney, Erika; Shanker, Anil; Yagita, Hideo et al. (2006) TNF-related apoptosis-inducing ligand as a therapeutic agent in autoimmunity and cancer. Immunol Cell Biol 84:87-98
Sayers, Thomas J; Murphy, William J (2006) Combining proteasome inhibition with TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) for cancer therapy. Cancer Immunol Immunother 55:76-84
Khan, Tahira; Stauffer, Jimmy K; Williams, Rebecca et al. (2006) Proteasome inhibition to maximize the apoptotic potential of cytokine therapy for murine neuroblastoma tumors. J Immunol 176:6302-12
Sun, Kai; Wilkins, Danice E C; Anver, Miriam R et al. (2005) Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD): delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood 106:3293-9
Brooks, Alan D; Sayers, Thomas J (2005) Reduction of the antiapoptotic protein cFLIP enhances the susceptibility of human renal cancer cells to TRAIL apoptosis. Cancer Immunol Immunother 54:499-505
Sedelies, Karin A; Sayers, Thomas J; Edwards, Kirsten M et al. (2004) Discordant regulation of granzyme H and granzyme B expression in human lymphocytes. J Biol Chem 279:26581-7
Sun, Kai; Welniak, Lisbeth A; Panoskaltsis-Mortari, Angela et al. (2004) Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci U S A 101:8120-5
Takeda, Kazuyoshi; Yamaguchi, Noriko; Akiba, Hisaya et al. (2004) Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 199:437-48
Smyth, Mark J; Swann, Jeremy; Kelly, Janice M et al. (2004) NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200:1325-35

Showing the most recent 10 out of 15 publications