In the last several years, our group has studied the folding behavior of small single domain proteins, including cyt c, Rd-apocyt b562, barnase, PDZ domain, and FAT domain. We found that these proteins fold through partially unfolded intermediates that exist after the rate-limiting step. We called them """"""""hidden intermediates"""""""" since they can not be detected in conventional kinetic experiments. Further, we have developed a native-state hydrogen exchange-directed protein engineering method for populating the intermediates and determined the first high-resolution structures of the intermediates by multi-dimensional NMR methods. Recently, we have extended our studies to include multi-domain proteins such as T4 lysozyme, ribonuclease H, and a redesigned protein by coupling protein A B-domain with Rd-apocyt b562. The results obtained from these studies provide strong support for the hypothesis that the kinetic principle of protein folding is the step-wise folding of cooperative structure units (foldons) (see pictures in the Gallery). We also provided theoretical arguments on why proteins should fold in a step-wise manner and why the current funnel-like energy landscape view is inadequate to describe the folding behavior of proteins, i.e., desolvation during folding leads to energy barrier on the energy landscape, random search, and co-opertive formation of partially unfolded intermediates.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010276-11
Application #
7732982
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2008
Total Cost
$692,323
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Zhou, Zheng; Feng, Hanqiao; Ghirlando, Rodolfo et al. (2008) The high-resolution NMR structure of the early folding intermediate of the Thermus thermophilus ribonuclease H. J Mol Biol 384:531-9
Tu, Chao; Tan, Yu Hong; Shaw, Gary et al. (2008) Impact of low-frequency hotspot mutation R282Q on the structure of p53 DNA-binding domain as revealed by crystallography at 1.54 angstroms resolution. Acta Crystallogr D Biol Crystallogr 64:471-7
Kato, Hidenori; Vu, Ngoc Diep; Feng, Hanqiao et al. (2007) The folding pathway of T4 lysozyme: an on-pathway hidden folding intermediate. J Mol Biol 365:881-91
Kato, Hidenori; Feng, Hanqiao; Bai, Yawen (2007) The folding pathway of T4 lysozyme: the high-resolution structure and folding of a hidden intermediate. J Mol Biol 365:870-80
Bai, Yawen (2006) Protein folding pathways studied by pulsed- and native-state hydrogen exchange. Chem Rev 106:1757-68
Korzhnev, Dmitry M; Bezsonova, Irina; Evanics, Ferenc et al. (2006) Probing the transition state ensemble of a protein folding reaction by pressure-dependent NMR relaxation dispersion. J Am Chem Soc 128:5262-9
Ai, Xuanjun; Zhou, Zheng; Bai, Yawen et al. (2006) 15N NMR spin relaxation dispersion study of the molecular crowding effects on protein folding under native conditions. J Am Chem Soc 128:3916-7
Bai, Yawen (2006) Energy barriers, cooperativity, and hidden intermediates in the folding of small proteins. Biochem Biophys Res Commun 340:976-83
Choy, Wing-Yiu; Zhou, Zheng; Bai, Yawen et al. (2005) An 15N NMR spin relaxation dispersion study of the folding of a pair of engineered mutants of apocytochrome b562. J Am Chem Soc 127:5066-72
Zhou, Zheng; Feng, Hanqiao; Zhou, Hongyi et al. (2005) Design and folding of a multidomain protein. Biochemistry 44:12107-12

Showing the most recent 10 out of 20 publications