Ras is a small, evolutionarily conserved GTPase that functions in the transmission of signals mediating cell growth and differentiation. Oncogenic Ras proteins, which are consistutively activated forms of Ras, cause inappropriate cell proliferation and are associated with approximately 30% of all human carcinomas. Because Ras plays such a critical role in both normal and abnormal growth processes, our laboratory has focused its research on elucidating the components involved in and the mechanisms regulating Ras-dependent signal transduction. Specifically, our studies can be divided into three main areas:1. Regulation of the Raf family of serine/threonine kinases. The Raf kinase family serves as a central intermediate in many signaling cascades, functioning to link activated tyrosine kinases and Ras with mitogen activated protein kinase (MAPK) and MAPK kinase (MKK or MEK). Our goal in this project is to examine the means by which Raf becomes activated and inactivated during growth, development, and oncogenesis. 2. Function of Kinase Suppressor of Ras (KSR). KSR was discovered to be a positive effector of Ras signaling by genetic studies performed in Drosophila and C. elegans. Our investigation of the mammalian KSR protein has been to determine the specific mechanism(s) by which KSR functions to transduce Ras-dependent signals.3. Ras signaling pathways in Drosophila. Due to the complex nature of cellular signal transduction, our laboratory has had an ongoing interest in using Drosophila as a model system for studying signaling events. We are currently using this system to identify novel proteins involved in Ras-dependent signal transduction.

Agency
National Institute of Health (NIH)
Institute
Division of Basic Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010329-01
Application #
6419915
Study Section
(LGD)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2000
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Ritt, Daniel A; Abreu-Blanco, MarĂ­a T; Bindu, Lakshman et al. (2016) Inhibition of Ras/Raf/MEK/ERK Pathway Signaling by a Stress-Induced Phospho-Regulatory Circuit. Mol Cell 64:875-887
Shalin, Sara C; Hernandez, Caterina M; Dougherty, Michele K et al. (2006) Kinase suppressor of Ras1 compartmentalizes hippocampal signal transduction and subserves synaptic plasticity and memory formation. Neuron 50:765-79
Ritt, Daniel A; Daar, Ira O; Morrison, Deborah K (2005) KSR Regulation of the Raf-MEK-ERK Cascade. Methods Enzymol 407:224-37
Dougherty, Michele K; Muller, Jurgen; Ritt, Daniel A et al. (2005) Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17:215-24
Weber, Hans Oliver; Ludwig, Robert L; Morrison, Deborah et al. (2005) HDM2 phosphorylation by MAPKAP kinase 2. Oncogene 24:1965-72
Murakami, Monica S; Moody, Sally A; Daar, Ira O et al. (2004) Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation. Development 131:571-80
Dougherty, Michele K; Morrison, Deborah K (2004) Unlocking the code of 14-3-3. J Cell Sci 117:1875-84
Ory, Stephane; Morrison, Deborah K (2004) Signal transduction: implications for Ras-dependent ERK signaling. Curr Biol 14:R277-8
Morrison, Deborah K (2004) Cancer: enzymes play molecular tag. Nature 428:813-5
Janssen, Richard A J; Kim, Phillia N; Mier, James W et al. (2003) Overexpression of kinase suppressor of Ras upregulates the high-molecular-weight tropomyosin isoforms in ras-transformed NIH 3T3 fibroblasts. Mol Cell Biol 23:1786-97

Showing the most recent 10 out of 16 publications