The Genome Recombination/Regulation Section focuses on two topics related to recombination and genome stability: mechanisms that generate DNA palindromic gene amplifications and the origin of DNA synthesis errors associated with genetic recombination. Studies on genome instability. We are continuing our analysis of how DNA palindromes are generated. These head to head DNA sequences are highly unstable. Some tumor cells undergo gene amplification by unknown mechanisms that generate palindromes. The instability of these sequences contributes to additional genome rearrangements that occur in tumors. Because palindromes are unstable in bacteria, it is it nearly impossible to clone them. Similarly, the secondary structures that can be adopted by palindromic DNAs make them very difficult to sequence. We opened the field of research on the origin of DNA palindromes by making progress in three important areas related to the study of palindromes. First, we identified yeast strains that tolerate palindromes. Second, we developed a method that allows us to sequence palindromic DNAs. Third, we developed a recombination substrate that generates palindromes and identified a class of recombinants that is almost exclusively palindromes. We demonstrated that the palindromes are formed in our system by a novel kind of nonhomologous end joining (NHEJ) which is independent of some of the recombination functions that are required for most NHEJ events. We recently demonstrated that we can isolate palindromic sequences from mammalian genomes, opening the door to the analysis of palindromes found in normal and malignant cells. We are collaborating on the analysis of DNA palindromes and inverted repeats found in human tumors. This common mechanism of gene amplification in tumors was not accessible to physical characterization until the breakthrough we made described above. We have developed new methods to isolate the novel junctions associated with DNA palindromes found in tumors. It is our expectation that the characterization of those junctions will help reveal details of the mechanism by which they are generated. Our similar approach to DNA palindromes in yeast was paradigm shifting in that it revealed a very different mechanism of formation quite unlike the generally accepted model.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010380-09
Application #
7733018
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2008
Total Cost
$532,857
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Santoyo, Gustavo; Strathern, Jeffrey N (2008) Non-homologous end joining is important for repair of Cr(VI)-induced DNA damage in Saccharomyces cerevisiae. Microbiol Res 163:113-9
Kireeva, Maria L; Nedialkov, Yuri A; Cremona, Gina H et al. (2008) Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol Cell 30:557-66
Flys, Tamara; Nissley, Dwight V; Claasen, Cassidy W et al. (2005) Sensitive drug-resistance assays reveal long-term persistence of HIV-1 variants with the K103N nevirapine (NVP) resistance mutation in some women and infants after the administration of single-dose NVP: HIVNET 012. J Infect Dis 192:24-9
Rattray, Alison J; Shafer, Brenda K; Neelam, Beena et al. (2005) A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev 19:1390-9
Malagon, Francisco; Tong, Amy H; Shafer, Brenda K et al. (2004) Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation-elongation transition. Genetics 166:1215-27