A multicenter collaboration between the NCI-Frederick Molecular Targets Discovery and HIV Drug Resistance Programs, the National Institute of Child Health and Development, and the University of Pittsburgh has used high-throughput robotics to screen several libraries, totaling 250,000 compounds, for small-molecule inhibitors of HIV RNase H function. Secondary screening against bacterial and human RNase H has addressed whether selectivity for the retroviral enzyme can be achieved. Several structural classes of RNase H inhibitors have been identified by this strategy, the most potent of which was the hydroxylated tropolone beta-thujaplicinol. Derived from the bark of the western cedar Thuja plicata, beta-thujaplicinol inhibited HIV-1 RT/RNaseH at a concentration of 0.2 uM, while the IC50 for human RNase H was 6.0 uM and that of the bacterial enzyme more than 50 uM. In addition, beta-thujaplicinol was shown to synergize with the nonnucleoside inhibitor calanolide A, strengthening contentions from other groups that both the DNA polymerase and RNase H activities of HIV-1 RT can be simultaneously targeted. Vinylogous ureas constitute a second structural class of RNase H inhibitors, and a patent covering these inhibitors has been submitted. Structural studies to define the binding site of the most potent RNase H inhibitors are currently underway. We are continuing our studies on RNase H as an antiviral target by (1) using crystallographic data to alter residues of RT implicated in inhibitor binding, (2) synthesizing novel derivatives of both structural classes, and (3) investigating the relationship between impaired RNase H function and increased excision of chain-terminating nucleoside RT inhibitors (NRTIs). Site-specific derivatization with a novel trifunctional agent will also be investigated as a general method of creating fluorescent proteins, allowing fluorescence polarization to be used for screening protein:protein interactions. Initial studies will focus on the interaction of the host protein lens epithelium-derived growth factor (LEDGF) with HIV-1 integrase. [Corresponds to Le Grice Project 3 in the April 2007 site visit report of the HIV Drug Resistance Program]

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010494-06
Application #
7733056
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2008
Total Cost
$487,046
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Wendeler, Michaela; Lee, Hsiu-Fang; Bermingham, Alun et al. (2008) Vinylogous ureas as a novel class of inhibitors of reverse transcriptase-associated ribonuclease H activity. ACS Chem Biol 3:635-44
Bokesch, Heidi R; Wamiru, Antony; Le Grice, Stuart F J et al. (2008) HIV-1 ribonuclease H inhibitory phenolic glycosides from Eugenia hyemalis. J Nat Prod 71:1634-6
Budihas, Scott R; Gorshkova, Inna; Gaidamakov, Sergei et al. (2005) Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones. Nucleic Acids Res 33:1249-56
Chan, King C; Budihas, Scott R; Le Grice, Stuart F J et al. (2004) A capillary electrophoretic assay for ribonuclease H activity. Anal Biochem 331:296-302
Parniak, Michael A; Min, Kyung-Lyum; Budihas, Scott R et al. (2003) A fluorescence-based high-throughput screening assay for inhibitors of human immunodeficiency virus-1 reverse transcriptase-associated ribonuclease H activity. Anal Biochem 322:33-9