To date, in vivo molecular imaging agents specifically target the cell surface or microenvironment. However, most of the highly specific changes of cancer cells that differentiate cancers cells from normal cells occur intracellularly. The challenge, therefore, is to develop agents that report intracytoplasmic changes yet still are capable of being imaged in vivo. The first step in achieving this goal is to target the imaging agent to the cell surface which requires affinity for a cell surface marker. The ligand must then be internalized by endocytosis and then bind to the appropriate site whereupon it """"""""activates"""""""". These requirements place large demands on synthetic chemistry since the molecular construct must have multiple functionalities. We are developing """"""""smart"""""""" activatable optical constructs which only fluoresce when they are internalized to the cytoplasm. Using a series of commercially available dyes that are bound to targeting compounds and then modified to fluoresce under specific intracellular conditions such as lower pH and in the presence of specific enzymatic activity we are making progress toward the goal of intracellular in vivo imaging. This work is being performed in collaboration with Prof. Urano from the University of Tokyo Chemistry Department.
Showing the most recent 10 out of 17 publications