Functional and metabolic MRI techniques have been rapidly evolving and have tremendous potential for clinical brain disorders research. Clinical activation fMRI studies are performed at 1.5 and at 3.0 Tesla using blood oxygenation level dependent (BOLD) contrast method and arterial spin tagging (AST) technique using the attenuating the static signal in arterial spin tagging (ASSIST) approach. To enable the simultaneous collection of cerebral blood flow and BOLD data, a multi-slice version of ASSIST was developed. While maintaining back-ground suppression in all slices simultaneous acquisition of ASSIST and BOLD data during a functional task and by collecting resting-state were collect in healthy subjects at 1.5 Tesla and 3 Tesla. The temporal stability of the perfusion signal was found to be 60% greater at 3 T compared to 1.5 T, which was attributed to the insensitivity of spin labeling to physiologic noise. This study demonstrated that combining spin labeling approaches for determining cerebral blood flow and BOLD fMRI data could be obtained with sufficiently high temporal and spatial resolution to be used for routing studies of brain physiology at 3Tesla.

Agency
National Institute of Health (NIH)
Institute
Clinical Center (CLC)
Type
Intramural Research (Z01)
Project #
1Z01CL090003-11
Application #
7215885
Study Section
(LDRR)
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2005
Total Cost
Indirect Cost
Name
Clinical Center
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Manson, S C; Wegner, C; Filippi, M et al. (2008) Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a functional pathology of interhemispheric neuronal inhibition. Exp Brain Res 187:25-31
Manson, Stephanie C; Palace, Jacqueline; Frank, Joseph A et al. (2006) Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus callosum atrophy. Exp Brain Res 174:728-33
St Lawrence, K S; Frank, J A; Bandettini, P A et al. (2005) Noise reduction in multi-slice arterial spin tagging imaging. Magn Reson Med 53:735-8
de Zwart, Jacco A; Silva, Afonso C; van Gelderen, Peter et al. (2005) Temporal dynamics of the BOLD fMRI impulse response. Neuroimage 24:667-77
Morgen, Katrin; Kadom, Nadja; Sawaki, Lumy et al. (2004) Kinematic specificity of cortical reorganization associated with motor training. Neuroimage 21:1182-7
Fera, Francesco; Yongbi, Martin N; van Gelderen, Peter et al. (2004) EPI-BOLD fMRI of human motor cortex at 1.5 T and 3.0 T: sensitivity dependence on echo time and acquisition bandwidth. J Magn Reson Imaging 19:19-26
St Lawrence, Keith S; Ye, Frank Q; Lewis, Bobbi K et al. (2002) Effects of indomethacin on cerebral blood flow at rest and during hypercapnia: an arterial spin tagging study in humans. J Magn Reson Imaging 15:628-35
Yongbi, Martin N; Fera, Francesco; Yang, Yihong et al. (2002) Pulsed arterial spin labeling: comparison of multisection baseline and functional MR imaging perfusion signal at 1.5 and 3.0 T: initial results in six subjects. Radiology 222:569-75
Yongbi, M N; Fera, F; Mattay, V S et al. (2001) Simultaneous BOLD/perfusion measurement using dual-echo FAIR and UNFAIR: sequence comparison at 1.5T and 3.0T. Magn Reson Imaging 19:1159-65