The dopamine transporter (DAT) has been identified as a principal brain receptor site previously correlated with the rewarding and euphoric properties of cocaine. Euphoric responses to rapid administration of cocaine can be much more prominent than those that follow slower rates of administration. In previous years, investigators in this Branch have found that activators of protein kinase C (PKC) modulate dopamine transport in transiently-expressing COS cells. In the current year, we have followed previous observations that identified DAT as a phosphoprotein to identify efects on MAP kinase agents on dopamine upatke rates. Studies of site directed mutants in ppotential phosphoacceptor sites identify N-terminal mutants as important for MAP kinase, and for PKC regulation. These data increase evidence that PKC and MAP kinase regulation of DAT occurs through multiple direct- and indirect mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Intramural Research (Z01)
Project #
1Z01DA000159-06
Application #
6431925
Study Section
(MNRB)
Program Officer
Wetherington, Cora Lee
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2000
Total Cost
Indirect Cost
Name
National Institute on Drug Abuse
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Lin, Zhicheng; Uhl, George R (2005) Proline mutations induce negative-dosage effects on uptake velocity of the dopamine transporter. J Neurochem 94:276-87
Dohi, Toshihiro; Kitayama, Shigeo; Morioka, Norimitsu et al. (2004) Regulation of dopamine and MPP+ transport by catecholamine transporters. Nihon Shinkei Seishin Yakurigaku Zasshi 24:43-7
Lin, Zhicheng; Zhang, Ping-Wu; Zhu, Xuguang et al. (2003) Phosphatidylinositol 3-kinase, protein kinase C, and MEK1/2 kinase regulation of dopamine transporters (DAT) require N-terminal DAT phosphoacceptor sites. J Biol Chem 278:20162-70
Moron, Jose A; Zakharova, Irina; Ferrer, Jasmine V et al. (2003) Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. J Neurosci 23:8480-8
Uhl, George R (2003) Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Mov Disord 18 Suppl 7:S71-80
Uhl, George R; Lin, Zhicheng (2003) The top 20 dopamine transporter mutants: structure-function relationships and cocaine actions. Eur J Pharmacol 479:71-82
Lin, Zhicheng; Uhl, George R (2003) Human dopamine transporter gene variation: effects of protein coding variants V55A and V382A on expression and uptake activities. Pharmacogenomics J 3:159-68
Liu, Qing-Rong; Zhang, Ping-Wu; Zhen, Qiaoxi et al. (2002) KEPI, a PKC-dependent protein phosphatase 1 inhibitor regulated by morphine. J Biol Chem 277:13312-20