Many studies have examined the effect of experimenter-delivered methamphetamine on the mesolimbic and nigrostriatal dopamine pathways. In contrast, little is known about the effect of methamphetamine self-administration on these neuronal pathways. We studied the effect of methamphetamine self-administration on two key regulators of dopamine transmission, tyrosine hydroxylase (TH), and dopamine transporter (DAT), in components of the mesolimbic and nigrostriatal dopamine pathways.? Methods Rats self-administered methamphetamine (0.1 mg/kg per infusion, fixed-ratio-1 reinforcement schedule) or saline (control condition) for 9 h/day over 10 days. The brains of these rats were collected after 1 or 30 days of forced abstinence and the expression levels of TH and DAT were assayed by in situ, hybridization and western blot.? Results TH mRNA and protein levels were increased in the ventral tegmental area (VTA, the cell body region of the mesolimbic dopamine system) and the substantia nigra pars compacta (SNC, the cell body region of the nigrostriatal dopamine system) after 1 day, but not 30 days, of forced abstinence from methamphetamine. In contrast, methamphetamine self-administration had no effect on TH protein levels in dopaminergic terminals located in the nucleus accumbens and caudate?putamen. In addition, methamphetamine self-administration had no effect on DAT mRNA levels in the VTA.? Conclusions Results suggest that extended daily access to self-administered methamphetamine results in a transient, short-lasting effect on mesolimbic and nigrostriatal dopamine neurons of the rat brain.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Intramural Research (Z01)
Project #
1Z01DA000464-04
Application #
7320334
Study Section
(CNRB)
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2006
Total Cost
Indirect Cost
Name
National Institute on Drug Abuse
Department
Type
DUNS #
City
State
Country
United States
Zip Code