Although the molecular target for drug therapy of sickle cell disease has been known for over 50 years, the only drug approved by the United States Food and Drug Administration is hydroxyurea. Hydroxyurea reduces the probability of vas-occlusion by increasing the synthesis of fetal hemoglobin, which dilutes the abnormal hemoglobin S, markedly slowing its polymerization to form the fibers that distort (sickle) and make the red cells inflexible. This drug is, however, only partially successful in reducing the frequency of pain crises and the chronic organ damage characteristic of the disease. The search for additional and more effective therapeutic agents has been severely hampered by the lack of a high throughput assay for inhibition of sickling. We are developing a method to rapidly, accurately and sensitively test for anti-sickling activity in large populations of human red blood cells by measuring the distribution of sickling times.